This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product with ring unity. ( lmodvs1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 4 | 3 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) ) |
| 7 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 8 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 9 | 1 3 2 8 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
| 10 | 7 9 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |