This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. ( lmodvsneg analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsneg.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| clmvsneg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvsneg.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvsneg.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| clmvsneg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| clmvsneg.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) | ||
| clmvsneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| clmvsneg.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | ||
| Assertion | clmvsneg | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( - 𝑅 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsneg.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | clmvsneg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clmvsneg.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvsneg.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 5 | clmvsneg.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | clmvsneg.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) | |
| 7 | clmvsneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | clmvsneg.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | |
| 9 | eqid | ⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) | |
| 10 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | 1 2 3 4 5 9 11 7 8 | lmodvsneg | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) · 𝑋 ) ) |
| 13 | 2 5 | clmneg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑅 ∈ 𝐾 ) → - 𝑅 = ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) ) |
| 14 | 6 8 13 | syl2anc | ⊢ ( 𝜑 → - 𝑅 = ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( - 𝑅 · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝑅 ) · 𝑋 ) ) |
| 16 | 12 15 | eqtr4d | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( - 𝑅 · 𝑋 ) ) |