This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmmulg.1 | |- V = ( Base ` W ) |
|
| clmmulg.2 | |- .xb = ( .g ` W ) |
||
| clmmulg.3 | |- .x. = ( .s ` W ) |
||
| Assertion | clmmulg | |- ( ( W e. CMod /\ A e. ZZ /\ B e. V ) -> ( A .xb B ) = ( A .x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmmulg.1 | |- V = ( Base ` W ) |
|
| 2 | clmmulg.2 | |- .xb = ( .g ` W ) |
|
| 3 | clmmulg.3 | |- .x. = ( .s ` W ) |
|
| 4 | oveq1 | |- ( x = 0 -> ( x .xb B ) = ( 0 .xb B ) ) |
|
| 5 | oveq1 | |- ( x = 0 -> ( x .x. B ) = ( 0 .x. B ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = 0 -> ( ( x .xb B ) = ( x .x. B ) <-> ( 0 .xb B ) = ( 0 .x. B ) ) ) |
| 7 | oveq1 | |- ( x = y -> ( x .xb B ) = ( y .xb B ) ) |
|
| 8 | oveq1 | |- ( x = y -> ( x .x. B ) = ( y .x. B ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = y -> ( ( x .xb B ) = ( x .x. B ) <-> ( y .xb B ) = ( y .x. B ) ) ) |
| 10 | oveq1 | |- ( x = ( y + 1 ) -> ( x .xb B ) = ( ( y + 1 ) .xb B ) ) |
|
| 11 | oveq1 | |- ( x = ( y + 1 ) -> ( x .x. B ) = ( ( y + 1 ) .x. B ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( x = ( y + 1 ) -> ( ( x .xb B ) = ( x .x. B ) <-> ( ( y + 1 ) .xb B ) = ( ( y + 1 ) .x. B ) ) ) |
| 13 | oveq1 | |- ( x = -u y -> ( x .xb B ) = ( -u y .xb B ) ) |
|
| 14 | oveq1 | |- ( x = -u y -> ( x .x. B ) = ( -u y .x. B ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = -u y -> ( ( x .xb B ) = ( x .x. B ) <-> ( -u y .xb B ) = ( -u y .x. B ) ) ) |
| 16 | oveq1 | |- ( x = A -> ( x .xb B ) = ( A .xb B ) ) |
|
| 17 | oveq1 | |- ( x = A -> ( x .x. B ) = ( A .x. B ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( x = A -> ( ( x .xb B ) = ( x .x. B ) <-> ( A .xb B ) = ( A .x. B ) ) ) |
| 19 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 20 | 1 19 2 | mulg0 | |- ( B e. V -> ( 0 .xb B ) = ( 0g ` W ) ) |
| 21 | 20 | adantl | |- ( ( W e. CMod /\ B e. V ) -> ( 0 .xb B ) = ( 0g ` W ) ) |
| 22 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 23 | 1 22 3 19 | clm0vs | |- ( ( W e. CMod /\ B e. V ) -> ( 0 .x. B ) = ( 0g ` W ) ) |
| 24 | 21 23 | eqtr4d | |- ( ( W e. CMod /\ B e. V ) -> ( 0 .xb B ) = ( 0 .x. B ) ) |
| 25 | oveq1 | |- ( ( y .xb B ) = ( y .x. B ) -> ( ( y .xb B ) ( +g ` W ) B ) = ( ( y .x. B ) ( +g ` W ) B ) ) |
|
| 26 | clmgrp | |- ( W e. CMod -> W e. Grp ) |
|
| 27 | 26 | grpmndd | |- ( W e. CMod -> W e. Mnd ) |
| 28 | 27 | ad2antrr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> W e. Mnd ) |
| 29 | simpr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> y e. NN0 ) |
|
| 30 | simplr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> B e. V ) |
|
| 31 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 32 | 1 2 31 | mulgnn0p1 | |- ( ( W e. Mnd /\ y e. NN0 /\ B e. V ) -> ( ( y + 1 ) .xb B ) = ( ( y .xb B ) ( +g ` W ) B ) ) |
| 33 | 28 29 30 32 | syl3anc | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( y + 1 ) .xb B ) = ( ( y .xb B ) ( +g ` W ) B ) ) |
| 34 | simpll | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> W e. CMod ) |
|
| 35 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 36 | 22 35 | clmzss | |- ( W e. CMod -> ZZ C_ ( Base ` ( Scalar ` W ) ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ZZ C_ ( Base ` ( Scalar ` W ) ) ) |
| 38 | nn0z | |- ( y e. NN0 -> y e. ZZ ) |
|
| 39 | 38 | adantl | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> y e. ZZ ) |
| 40 | 37 39 | sseldd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> y e. ( Base ` ( Scalar ` W ) ) ) |
| 41 | 1zzd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> 1 e. ZZ ) |
|
| 42 | 37 41 | sseldd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 43 | 1 22 3 35 31 | clmvsdir | |- ( ( W e. CMod /\ ( y e. ( Base ` ( Scalar ` W ) ) /\ 1 e. ( Base ` ( Scalar ` W ) ) /\ B e. V ) ) -> ( ( y + 1 ) .x. B ) = ( ( y .x. B ) ( +g ` W ) ( 1 .x. B ) ) ) |
| 44 | 34 40 42 30 43 | syl13anc | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( y + 1 ) .x. B ) = ( ( y .x. B ) ( +g ` W ) ( 1 .x. B ) ) ) |
| 45 | 1 3 | clmvs1 | |- ( ( W e. CMod /\ B e. V ) -> ( 1 .x. B ) = B ) |
| 46 | 45 | adantr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( 1 .x. B ) = B ) |
| 47 | 46 | oveq2d | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( y .x. B ) ( +g ` W ) ( 1 .x. B ) ) = ( ( y .x. B ) ( +g ` W ) B ) ) |
| 48 | 44 47 | eqtrd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( y + 1 ) .x. B ) = ( ( y .x. B ) ( +g ` W ) B ) ) |
| 49 | 33 48 | eqeq12d | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( ( y + 1 ) .xb B ) = ( ( y + 1 ) .x. B ) <-> ( ( y .xb B ) ( +g ` W ) B ) = ( ( y .x. B ) ( +g ` W ) B ) ) ) |
| 50 | 25 49 | imbitrrid | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN0 ) -> ( ( y .xb B ) = ( y .x. B ) -> ( ( y + 1 ) .xb B ) = ( ( y + 1 ) .x. B ) ) ) |
| 51 | 50 | ex | |- ( ( W e. CMod /\ B e. V ) -> ( y e. NN0 -> ( ( y .xb B ) = ( y .x. B ) -> ( ( y + 1 ) .xb B ) = ( ( y + 1 ) .x. B ) ) ) ) |
| 52 | fveq2 | |- ( ( y .xb B ) = ( y .x. B ) -> ( ( invg ` W ) ` ( y .xb B ) ) = ( ( invg ` W ) ` ( y .x. B ) ) ) |
|
| 53 | 26 | ad2antrr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> W e. Grp ) |
| 54 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 55 | 54 | adantl | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> y e. ZZ ) |
| 56 | simplr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> B e. V ) |
|
| 57 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 58 | 1 2 57 | mulgneg | |- ( ( W e. Grp /\ y e. ZZ /\ B e. V ) -> ( -u y .xb B ) = ( ( invg ` W ) ` ( y .xb B ) ) ) |
| 59 | 53 55 56 58 | syl3anc | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ( -u y .xb B ) = ( ( invg ` W ) ` ( y .xb B ) ) ) |
| 60 | simpll | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> W e. CMod ) |
|
| 61 | 36 | ad2antrr | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ZZ C_ ( Base ` ( Scalar ` W ) ) ) |
| 62 | 61 55 | sseldd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> y e. ( Base ` ( Scalar ` W ) ) ) |
| 63 | 1 22 3 57 35 60 56 62 | clmvsneg | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ( ( invg ` W ) ` ( y .x. B ) ) = ( -u y .x. B ) ) |
| 64 | 63 | eqcomd | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ( -u y .x. B ) = ( ( invg ` W ) ` ( y .x. B ) ) ) |
| 65 | 59 64 | eqeq12d | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ( ( -u y .xb B ) = ( -u y .x. B ) <-> ( ( invg ` W ) ` ( y .xb B ) ) = ( ( invg ` W ) ` ( y .x. B ) ) ) ) |
| 66 | 52 65 | imbitrrid | |- ( ( ( W e. CMod /\ B e. V ) /\ y e. NN ) -> ( ( y .xb B ) = ( y .x. B ) -> ( -u y .xb B ) = ( -u y .x. B ) ) ) |
| 67 | 66 | ex | |- ( ( W e. CMod /\ B e. V ) -> ( y e. NN -> ( ( y .xb B ) = ( y .x. B ) -> ( -u y .xb B ) = ( -u y .x. B ) ) ) ) |
| 68 | 6 9 12 15 18 24 51 67 | zindd | |- ( ( W e. CMod /\ B e. V ) -> ( A e. ZZ -> ( A .xb B ) = ( A .x. B ) ) ) |
| 69 | 68 | 3impia | |- ( ( W e. CMod /\ B e. V /\ A e. ZZ ) -> ( A .xb B ) = ( A .x. B ) ) |
| 70 | 69 | 3com23 | |- ( ( W e. CMod /\ A e. ZZ /\ B e. V ) -> ( A .xb B ) = ( A .x. B ) ) |