This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shuni.1 | ⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) | |
| shuni.2 | ⊢ ( 𝜑 → 𝐾 ∈ Sℋ ) | ||
| shuni.3 | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐾 ) = 0ℋ ) | ||
| shuni.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐻 ) | ||
| shuni.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| shuni.6 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) | ||
| shuni.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) | ||
| shuni.8 | ⊢ ( 𝜑 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) | ||
| Assertion | shuni | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shuni.1 | ⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) | |
| 2 | shuni.2 | ⊢ ( 𝜑 → 𝐾 ∈ Sℋ ) | |
| 3 | shuni.3 | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐾 ) = 0ℋ ) | |
| 4 | shuni.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐻 ) | |
| 5 | shuni.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 6 | shuni.6 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) | |
| 7 | shuni.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐾 ) | |
| 8 | shuni.8 | ⊢ ( 𝜑 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ) | |
| 9 | shsubcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐶 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) | |
| 10 | 1 4 6 9 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐻 ) |
| 11 | shel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) | |
| 12 | 1 4 11 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ ℋ ) |
| 13 | shel | ⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐵 ∈ 𝐾 ) → 𝐵 ∈ ℋ ) | |
| 14 | 2 5 13 | syl2anc | ⊢ ( 𝜑 → 𝐵 ∈ ℋ ) |
| 15 | shel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐶 ∈ 𝐻 ) → 𝐶 ∈ ℋ ) | |
| 16 | 1 6 15 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ ℋ ) |
| 17 | shel | ⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ) → 𝐷 ∈ ℋ ) | |
| 18 | 2 7 17 | syl2anc | ⊢ ( 𝜑 → 𝐷 ∈ ℋ ) |
| 19 | hvaddsub4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) | |
| 20 | 12 14 16 18 19 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐶 +ℎ 𝐷 ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) ) |
| 21 | 8 20 | mpbid | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = ( 𝐷 −ℎ 𝐵 ) ) |
| 22 | shsubcl | ⊢ ( ( 𝐾 ∈ Sℋ ∧ 𝐷 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) | |
| 23 | 2 7 5 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) ∈ 𝐾 ) |
| 24 | 21 23 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 𝐾 ) |
| 25 | 10 24 | elind | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ ( 𝐻 ∩ 𝐾 ) ) |
| 26 | 25 3 | eleqtrd | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ) |
| 27 | elch0 | ⊢ ( ( 𝐴 −ℎ 𝐶 ) ∈ 0ℋ ↔ ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) | |
| 28 | 26 27 | sylib | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐶 ) = 0ℎ ) |
| 29 | hvsubeq0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) | |
| 30 | 12 16 29 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐶 ) = 0ℎ ↔ 𝐴 = 𝐶 ) ) |
| 31 | 28 30 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| 32 | 21 28 | eqtr3d | ⊢ ( 𝜑 → ( 𝐷 −ℎ 𝐵 ) = 0ℎ ) |
| 33 | hvsubeq0 | ⊢ ( ( 𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) | |
| 34 | 18 14 33 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐷 −ℎ 𝐵 ) = 0ℎ ↔ 𝐷 = 𝐵 ) ) |
| 35 | 32 34 | mpbid | ⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
| 36 | 35 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
| 37 | 31 36 | jca | ⊢ ( 𝜑 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |