This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil . (Contributed by Thierry Arnoux, 29-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| Assertion | cfilucfil | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | ⊢ 𝐹 = ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 2 | 1 | metust | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 3 | cfilufbas | ⊢ ( ( ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
| 5 | simpllr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 6 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 7 | ffun | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → Fun 𝐷 ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → Fun 𝐷 ) |
| 9 | 2 | ad2antrr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 10 | simplr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) | |
| 11 | 1 | metustfbas | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 13 | cnvimass | ⊢ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ⊆ dom 𝐷 | |
| 14 | fdm | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) | |
| 15 | 5 6 14 | 3syl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 16 | 13 15 | sseqtrid | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 17 | simpr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 18 | 17 | rphalfcld | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 19 | eqidd | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ) | |
| 20 | oveq2 | ⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( 0 [,) 𝑎 ) = ( 0 [,) ( 𝑥 / 2 ) ) ) | |
| 21 | 20 | imaeq2d | ⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ) |
| 22 | 21 | rspceeqv | ⊢ ( ( ( 𝑥 / 2 ) ∈ ℝ+ ∧ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 23 | 18 19 22 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 24 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 25 | 24 | biimpar | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ∈ 𝐹 ) |
| 26 | 5 23 25 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ∈ 𝐹 ) |
| 27 | 0xr | ⊢ 0 ∈ ℝ* | |
| 28 | 27 | a1i | ⊢ ( 𝑥 ∈ ℝ+ → 0 ∈ ℝ* ) |
| 29 | rpxr | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) | |
| 30 | 0le0 | ⊢ 0 ≤ 0 | |
| 31 | 30 | a1i | ⊢ ( 𝑥 ∈ ℝ+ → 0 ≤ 0 ) |
| 32 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 33 | 32 | rehalfcld | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ ) |
| 34 | rphalflt | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 ) | |
| 35 | 33 32 34 | ltled | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ≤ 𝑥 ) |
| 36 | icossico | ⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ ( 𝑥 / 2 ) ≤ 𝑥 ) ) → ( 0 [,) ( 𝑥 / 2 ) ) ⊆ ( 0 [,) 𝑥 ) ) | |
| 37 | 28 29 31 35 36 | syl22anc | ⊢ ( 𝑥 ∈ ℝ+ → ( 0 [,) ( 𝑥 / 2 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 38 | imass2 | ⊢ ( ( 0 [,) ( 𝑥 / 2 ) ) ⊆ ( 0 [,) 𝑥 ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) | |
| 39 | 17 37 38 | 3syl | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) |
| 40 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) → ( 𝑤 ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ↔ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) ) | |
| 41 | 40 | rspcev | ⊢ ( ( ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ∈ 𝐹 ∧ ( ◡ 𝐷 “ ( 0 [,) ( 𝑥 / 2 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) → ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) |
| 42 | 26 39 41 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) |
| 43 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ↔ ( ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) ) ) | |
| 44 | 43 | biimpar | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ∧ ( ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) ) → ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) |
| 45 | 12 16 42 44 | syl12anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) |
| 46 | cfiluexsm | ⊢ ( ( ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) | |
| 47 | 9 10 45 46 | syl3anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) |
| 48 | funimass2 | ⊢ ( ( Fun 𝐷 ∧ ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) ) → ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) | |
| 49 | 48 | ex | ⊢ ( Fun 𝐷 → ( ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) → ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 50 | 49 | reximdv | ⊢ ( Fun 𝐷 → ( ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑥 ) ) → ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 51 | 8 47 50 | sylc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 52 | 51 | ralrimiva | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 53 | 4 52 | jca | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) → ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 54 | simprl | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) | |
| 55 | oveq2 | ⊢ ( 𝑥 = 𝑎 → ( 0 [,) 𝑥 ) = ( 0 [,) 𝑎 ) ) | |
| 56 | 55 | sseq2d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ) ) |
| 57 | 56 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ) ) |
| 58 | simp-4r | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) | |
| 59 | 58 | simprd | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 60 | simplr | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → 𝑎 ∈ ℝ+ ) | |
| 61 | 57 59 60 | rspcdva | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ) |
| 62 | nfv | ⊢ Ⅎ 𝑦 ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 63 | nfv | ⊢ Ⅎ 𝑦 𝐶 ∈ ( fBas ‘ 𝑋 ) | |
| 64 | nfcv | ⊢ Ⅎ 𝑦 ℝ+ | |
| 65 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) | |
| 66 | 64 65 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) |
| 67 | 63 66 | nfan | ⊢ Ⅎ 𝑦 ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 68 | 62 67 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 69 | nfv | ⊢ Ⅎ 𝑦 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) | |
| 70 | 68 69 | nfan | ⊢ Ⅎ 𝑦 ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) |
| 71 | nfv | ⊢ Ⅎ 𝑦 𝑎 ∈ ℝ+ | |
| 72 | 70 71 | nfan | ⊢ Ⅎ 𝑦 ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) |
| 73 | nfv | ⊢ Ⅎ 𝑦 ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 | |
| 74 | 72 73 | nfan | ⊢ Ⅎ 𝑦 ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 75 | 54 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
| 76 | fbelss | ⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ 𝑋 ) | |
| 77 | 75 76 | sylancom | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ 𝑋 ) |
| 78 | xpss12 | ⊢ ( ( 𝑦 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑋 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 79 | 77 77 78 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 80 | simp-6r | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 81 | 80 6 14 | 3syl | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 82 | 79 81 | sseqtrrd | ⊢ ( ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) |
| 83 | 82 | ex | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ( 𝑦 ∈ 𝐶 → ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) ) |
| 84 | 74 83 | ralrimi | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∀ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) |
| 85 | r19.29r | ⊢ ( ( ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ∃ 𝑦 ∈ 𝐶 ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) ) | |
| 86 | sseqin2 | ⊢ ( ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ↔ ( dom 𝐷 ∩ ( 𝑦 × 𝑦 ) ) = ( 𝑦 × 𝑦 ) ) | |
| 87 | 86 | biimpi | ⊢ ( ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 → ( dom 𝐷 ∩ ( 𝑦 × 𝑦 ) ) = ( 𝑦 × 𝑦 ) ) |
| 88 | 87 | adantl | ⊢ ( ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( dom 𝐷 ∩ ( 𝑦 × 𝑦 ) ) = ( 𝑦 × 𝑦 ) ) |
| 89 | dminss | ⊢ ( dom 𝐷 ∩ ( 𝑦 × 𝑦 ) ) ⊆ ( ◡ 𝐷 “ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ) | |
| 90 | 88 89 | eqsstrrdi | ⊢ ( ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ) ) |
| 91 | imass2 | ⊢ ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) → ( ◡ 𝐷 “ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) | |
| 92 | 91 | adantr | ⊢ ( ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( ◡ 𝐷 “ ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 93 | 90 92 | sstrd | ⊢ ( ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 94 | 93 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐶 ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 95 | 85 94 | syl | ⊢ ( ( ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑎 ) ∧ ∀ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 96 | 61 84 95 | syl2anc | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 97 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐶 ( ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ↔ ( ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ) | |
| 98 | sstr | ⊢ ( ( ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) | |
| 99 | 98 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐶 ( ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) |
| 100 | 97 99 | sylbir | ⊢ ( ( ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) |
| 101 | 96 100 | sylancom | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑎 ∈ ℝ+ ) ∧ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) |
| 102 | simp-5r | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑤 ∈ 𝐹 ) ∧ 𝑤 ⊆ 𝑣 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 103 | simplr | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑤 ∈ 𝐹 ) ∧ 𝑤 ⊆ 𝑣 ) → 𝑤 ∈ 𝐹 ) | |
| 104 | 1 | metustel | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑤 ∈ 𝐹 ↔ ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) |
| 105 | 104 | biimpa | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐹 ) → ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 106 | 102 103 105 | syl2anc | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑤 ∈ 𝐹 ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) |
| 107 | r19.41v | ⊢ ( ∃ 𝑎 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝑤 ⊆ 𝑣 ) ↔ ( ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝑤 ⊆ 𝑣 ) ) | |
| 108 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) → ( 𝑤 ⊆ 𝑣 ↔ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) ) | |
| 109 | 108 | biimpa | ⊢ ( ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝑤 ⊆ 𝑣 ) → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 110 | 109 | reximi | ⊢ ( ∃ 𝑎 ∈ ℝ+ ( 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 111 | 107 110 | sylbir | ⊢ ( ( ∃ 𝑎 ∈ ℝ+ 𝑤 = ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 112 | 106 111 | sylancom | ⊢ ( ( ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ∧ 𝑤 ∈ 𝐹 ) ∧ 𝑤 ⊆ 𝑣 ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 113 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 114 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) → ( 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ↔ ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) ) ) | |
| 115 | 114 | biimpa | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) ) |
| 116 | 113 115 | sylancom | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ( 𝑣 ⊆ ( 𝑋 × 𝑋 ) ∧ ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) ) |
| 117 | 116 | simprd | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ∃ 𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣 ) |
| 118 | 112 117 | r19.29a | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ∃ 𝑎 ∈ ℝ+ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ⊆ 𝑣 ) |
| 119 | 101 118 | r19.29a | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ∧ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) → ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) |
| 120 | 119 | ralrimiva | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → ∀ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) |
| 121 | 2 | adantr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 122 | iscfilu | ⊢ ( ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) ) ) | |
| 123 | 121 122 | syl | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ∃ 𝑦 ∈ 𝐶 ( 𝑦 × 𝑦 ) ⊆ 𝑣 ) ) ) |
| 124 | 54 120 123 | mpbir2and | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ) |
| 125 | 53 124 | impbida | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen 𝐹 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |