This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a Cauchy filter base and any entourage V , there is an element of the filter small in V . (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfiluexsm | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) | |
| 2 | 1 | simplbda | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 4 | sseq2 | ⊢ ( 𝑣 = 𝑉 → ( ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑣 = 𝑉 → ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
| 6 | 5 | rspcv | ⊢ ( 𝑉 ∈ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ( ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) ) |
| 8 | 3 7 | mpd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑉 ) |