This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a Cauchy filter base on uniform space U ". (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvunirn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) | |
| 2 | unieq | ⊢ ( 𝑢 = 𝑈 → ∪ 𝑢 = ∪ 𝑈 ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑢 = 𝑈 → dom ∪ 𝑢 = dom ∪ 𝑈 ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑢 = 𝑈 → ( fBas ‘ dom ∪ 𝑢 ) = ( fBas ‘ dom ∪ 𝑈 ) ) |
| 5 | raleq | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) | |
| 6 | 4 5 | rabeqbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } = { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |
| 7 | df-cfilu | ⊢ CauFilu = ( 𝑢 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑢 ) ∣ ∀ 𝑣 ∈ 𝑢 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) | |
| 8 | fvex | ⊢ ( fBas ‘ dom ∪ 𝑈 ) ∈ V | |
| 9 | 8 | rabex | ⊢ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ∈ V |
| 10 | 6 7 9 | fvmpt | ⊢ ( 𝑈 ∈ ∪ ran UnifOn → ( CauFilu ‘ 𝑈 ) = { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |
| 11 | 1 10 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( CauFilu ‘ 𝑈 ) = { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) |
| 12 | 11 | eleq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ) ) |
| 13 | rexeq | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) | |
| 14 | 13 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ↔ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
| 15 | 14 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∣ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝑓 ( 𝑎 × 𝑎 ) ⊆ 𝑣 } ↔ ( 𝐹 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) |
| 16 | 12 15 | bitrdi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| 17 | ustbas2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( fBas ‘ 𝑋 ) = ( fBas ‘ dom ∪ 𝑈 ) ) |
| 19 | 18 | eleq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ 𝐹 ∈ ( fBas ‘ dom ∪ 𝑈 ) ) ) |
| 20 | 19 | anbi1d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ↔ ( 𝐹 ∈ ( fBas ‘ dom ∪ 𝑈 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| 21 | 16 20 | bitr4d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |