This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fgval | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ) ) |
| 3 | pweq | ⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) | |
| 4 | 3 | ineq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ∩ 𝒫 𝑦 ) = ( 𝐹 ∩ 𝒫 𝐴 ) ) |
| 5 | 4 | neeq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ ↔ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ) |
| 7 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 8 | elpw2g | ⊢ ( 𝑋 ∈ dom fBas → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
| 10 | elin | ⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴 ) ) | |
| 11 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 13 | 10 12 | bitri | ⊢ ( 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 15 | n0 | ⊢ ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐹 ∩ 𝒫 𝐴 ) ) | |
| 16 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝐴 ) ) | |
| 17 | 14 15 16 | 3bitr4i | ⊢ ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) |
| 18 | 17 | a1i | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) |
| 19 | 9 18 | anbi12d | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝒫 𝑋 ∧ ( 𝐹 ∩ 𝒫 𝐴 ) ≠ ∅ ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |
| 20 | 6 19 | bitrid | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐹 ∩ 𝒫 𝑦 ) ≠ ∅ } ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |
| 21 | 2 20 | bitrd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝐴 ) ) ) |