This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countable complement topology on a set A . Example 4 in Munkres p. 77. (Contributed by FL, 23-Aug-2006) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cctop | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∪ 𝑦 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 3 | eqeq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) | |
| 4 | 2 3 | orbi12d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ∨ ∪ 𝑦 = ∅ ) ) ) |
| 5 | uniss | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) | |
| 6 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 | |
| 7 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) | |
| 8 | 6 7 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
| 9 | 5 8 | sstrdi | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ 𝐴 ) |
| 10 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 11 | 10 | elpw | ⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 12 | 9 11 | sylibr | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 13 | uni0c | ⊢ ( ∪ 𝑦 = ∅ ↔ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) | |
| 14 | 13 | notbii | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
| 15 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ) |
| 17 | ssel2 | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) | |
| 18 | difeq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑧 ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑧 ) ≼ ω ) ) |
| 20 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) | |
| 21 | 19 20 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 22 | 21 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 23 | 17 22 | sylib | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 24 | 23 | simprd | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) |
| 25 | 24 | ord | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ ( 𝐴 ∖ 𝑧 ) ≼ ω → 𝑧 = ∅ ) ) |
| 26 | 25 | con1d | ⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 = ∅ → ( 𝐴 ∖ 𝑧 ) ≼ ω ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ 𝑧 ) ≼ ω ) |
| 28 | ctex | ⊢ ( ( 𝐴 ∖ 𝑧 ) ≼ ω → ( 𝐴 ∖ 𝑧 ) ∈ V ) | |
| 29 | 28 | adantl | ⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ 𝑧 ) ∈ V ) |
| 30 | simpllr | ⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → 𝑧 ∈ 𝑦 ) | |
| 31 | elssuni | ⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) | |
| 32 | sscon | ⊢ ( 𝑧 ⊆ ∪ 𝑦 → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) |
| 34 | ssdomg | ⊢ ( ( 𝐴 ∖ 𝑧 ) ∈ V → ( ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ) ) | |
| 35 | 29 33 34 | sylc | ⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ) |
| 36 | domtr | ⊢ ( ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) | |
| 37 | 35 36 | sylancom | ⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) |
| 38 | 27 37 | mpdan | ⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) |
| 39 | 38 | rexlimdva2 | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 40 | 16 39 | biimtrid | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ¬ ∪ 𝑦 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 41 | 40 | con1d | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ¬ ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω → ∪ 𝑦 = ∅ ) ) |
| 42 | 41 | orrd | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ∨ ∪ 𝑦 = ∅ ) ) |
| 43 | 4 12 42 | elrabd | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 44 | 43 | ax-gen | ⊢ ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 45 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 46 | 45 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 47 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) | |
| 48 | 46 47 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ) |
| 49 | 48 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ) |
| 50 | ssinss1 | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) | |
| 51 | vex | ⊢ 𝑦 ∈ V | |
| 52 | 51 | elpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 53 | 51 | inex1 | ⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 54 | 53 | elpw | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 55 | 50 52 54 | 3imtr4i | ⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 57 | difindi | ⊢ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) = ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) | |
| 58 | unctb | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) ≼ ω ) | |
| 59 | 57 58 | eqbrtrid | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ) |
| 60 | 59 | orcd | ⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 61 | ineq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( ∅ ∩ 𝑧 ) ) | |
| 62 | 0in | ⊢ ( ∅ ∩ 𝑧 ) = ∅ | |
| 63 | 61 62 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 64 | 63 | olcd | ⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 65 | ineq2 | ⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ∅ ) ) | |
| 66 | in0 | ⊢ ( 𝑦 ∩ ∅ ) = ∅ | |
| 67 | 65 66 | eqtrdi | ⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 68 | 67 | olcd | ⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 69 | 60 64 68 | ccase2 | ⊢ ( ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 70 | 69 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 71 | 56 70 | jca | ⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 72 | 49 22 71 | syl2anb | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 73 | difeq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 74 | 73 | breq1d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ) ) |
| 75 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) | |
| 76 | 74 75 | orbi12d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 77 | 76 | elrab | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 78 | 72 77 | sylibr | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 79 | 78 | rgen2 | ⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } |
| 80 | 44 79 | pm3.2i | ⊢ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 81 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 82 | rabexg | ⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ V ) | |
| 83 | istopg | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) ) | |
| 84 | 81 82 83 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) ) |
| 85 | 80 84 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ) |
| 86 | difeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐴 ) ) | |
| 87 | difid | ⊢ ( 𝐴 ∖ 𝐴 ) = ∅ | |
| 88 | 86 87 | eqtrdi | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ∅ ) |
| 89 | 88 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ∅ ≼ ω ) ) |
| 90 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 91 | 89 90 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ∅ ≼ ω ∨ 𝐴 = ∅ ) ) ) |
| 92 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 93 | omex | ⊢ ω ∈ V | |
| 94 | 93 | 0dom | ⊢ ∅ ≼ ω |
| 95 | 94 | orci | ⊢ ( ∅ ≼ ω ∨ 𝐴 = ∅ ) |
| 96 | 95 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≼ ω ∨ 𝐴 = ∅ ) ) |
| 97 | 91 92 96 | elrabd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 98 | elssuni | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) | |
| 99 | 97 98 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 100 | 8 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
| 101 | 99 100 | eqssd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 102 | istopon | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) | |
| 103 | 85 101 102 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |