This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The countable complement topology on a set A . Example 4 in Munkres p. 77. (Contributed by FL, 23-Aug-2006) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cctop | |- ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | |- ( x = U. y -> ( A \ x ) = ( A \ U. y ) ) |
|
| 2 | 1 | breq1d | |- ( x = U. y -> ( ( A \ x ) ~<_ _om <-> ( A \ U. y ) ~<_ _om ) ) |
| 3 | eqeq1 | |- ( x = U. y -> ( x = (/) <-> U. y = (/) ) ) |
|
| 4 | 2 3 | orbi12d | |- ( x = U. y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) ) |
| 5 | uniss | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
|
| 6 | ssrab2 | |- { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A |
|
| 7 | sspwuni | |- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A <-> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) |
|
| 8 | 6 7 | mpbi | |- U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A |
| 9 | 5 8 | sstrdi | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ A ) |
| 10 | vuniex | |- U. y e. _V |
|
| 11 | 10 | elpw | |- ( U. y e. ~P A <-> U. y C_ A ) |
| 12 | 9 11 | sylibr | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. ~P A ) |
| 13 | uni0c | |- ( U. y = (/) <-> A. z e. y z = (/) ) |
|
| 14 | 13 | notbii | |- ( -. U. y = (/) <-> -. A. z e. y z = (/) ) |
| 15 | rexnal | |- ( E. z e. y -. z = (/) <-> -. A. z e. y z = (/) ) |
|
| 16 | 14 15 | bitr4i | |- ( -. U. y = (/) <-> E. z e. y -. z = (/) ) |
| 17 | ssel2 | |- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
|
| 18 | difeq2 | |- ( x = z -> ( A \ x ) = ( A \ z ) ) |
|
| 19 | 18 | breq1d | |- ( x = z -> ( ( A \ x ) ~<_ _om <-> ( A \ z ) ~<_ _om ) ) |
| 20 | eqeq1 | |- ( x = z -> ( x = (/) <-> z = (/) ) ) |
|
| 21 | 19 20 | orbi12d | |- ( x = z -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 22 | 21 | elrab | |- ( z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 23 | 17 22 | sylib | |- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 24 | 23 | simprd | |- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) |
| 25 | 24 | ord | |- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. ( A \ z ) ~<_ _om -> z = (/) ) ) |
| 26 | 25 | con1d | |- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. z = (/) -> ( A \ z ) ~<_ _om ) ) |
| 27 | 26 | imp | |- ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ z ) ~<_ _om ) |
| 28 | ctex | |- ( ( A \ z ) ~<_ _om -> ( A \ z ) e. _V ) |
|
| 29 | 28 | adantl | |- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ z ) e. _V ) |
| 30 | simpllr | |- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> z e. y ) |
|
| 31 | elssuni | |- ( z e. y -> z C_ U. y ) |
|
| 32 | sscon | |- ( z C_ U. y -> ( A \ U. y ) C_ ( A \ z ) ) |
|
| 33 | 30 31 32 | 3syl | |- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) C_ ( A \ z ) ) |
| 34 | ssdomg | |- ( ( A \ z ) e. _V -> ( ( A \ U. y ) C_ ( A \ z ) -> ( A \ U. y ) ~<_ ( A \ z ) ) ) |
|
| 35 | 29 33 34 | sylc | |- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ ( A \ z ) ) |
| 36 | domtr | |- ( ( ( A \ U. y ) ~<_ ( A \ z ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) |
|
| 37 | 35 36 | sylancom | |- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) |
| 38 | 27 37 | mpdan | |- ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ U. y ) ~<_ _om ) |
| 39 | 38 | rexlimdva2 | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( E. z e. y -. z = (/) -> ( A \ U. y ) ~<_ _om ) ) |
| 40 | 16 39 | biimtrid | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. U. y = (/) -> ( A \ U. y ) ~<_ _om ) ) |
| 41 | 40 | con1d | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. ( A \ U. y ) ~<_ _om -> U. y = (/) ) ) |
| 42 | 41 | orrd | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) |
| 43 | 4 12 42 | elrabd | |- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 44 | 43 | ax-gen | |- A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 45 | difeq2 | |- ( x = y -> ( A \ x ) = ( A \ y ) ) |
|
| 46 | 45 | breq1d | |- ( x = y -> ( ( A \ x ) ~<_ _om <-> ( A \ y ) ~<_ _om ) ) |
| 47 | eqeq1 | |- ( x = y -> ( x = (/) <-> y = (/) ) ) |
|
| 48 | 46 47 | orbi12d | |- ( x = y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) |
| 49 | 48 | elrab | |- ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) |
| 50 | ssinss1 | |- ( y C_ A -> ( y i^i z ) C_ A ) |
|
| 51 | vex | |- y e. _V |
|
| 52 | 51 | elpw | |- ( y e. ~P A <-> y C_ A ) |
| 53 | 51 | inex1 | |- ( y i^i z ) e. _V |
| 54 | 53 | elpw | |- ( ( y i^i z ) e. ~P A <-> ( y i^i z ) C_ A ) |
| 55 | 50 52 54 | 3imtr4i | |- ( y e. ~P A -> ( y i^i z ) e. ~P A ) |
| 56 | 55 | ad2antrr | |- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( y i^i z ) e. ~P A ) |
| 57 | difindi | |- ( A \ ( y i^i z ) ) = ( ( A \ y ) u. ( A \ z ) ) |
|
| 58 | unctb | |- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ y ) u. ( A \ z ) ) ~<_ _om ) |
|
| 59 | 57 58 | eqbrtrid | |- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( A \ ( y i^i z ) ) ~<_ _om ) |
| 60 | 59 | orcd | |- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 61 | ineq1 | |- ( y = (/) -> ( y i^i z ) = ( (/) i^i z ) ) |
|
| 62 | 0in | |- ( (/) i^i z ) = (/) |
|
| 63 | 61 62 | eqtrdi | |- ( y = (/) -> ( y i^i z ) = (/) ) |
| 64 | 63 | olcd | |- ( y = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 65 | ineq2 | |- ( z = (/) -> ( y i^i z ) = ( y i^i (/) ) ) |
|
| 66 | in0 | |- ( y i^i (/) ) = (/) |
|
| 67 | 65 66 | eqtrdi | |- ( z = (/) -> ( y i^i z ) = (/) ) |
| 68 | 67 | olcd | |- ( z = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 69 | 60 64 68 | ccase2 | |- ( ( ( ( A \ y ) ~<_ _om \/ y = (/) ) /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 70 | 69 | ad2ant2l | |- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 71 | 56 70 | jca | |- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 72 | 49 22 71 | syl2anb | |- ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 73 | difeq2 | |- ( x = ( y i^i z ) -> ( A \ x ) = ( A \ ( y i^i z ) ) ) |
|
| 74 | 73 | breq1d | |- ( x = ( y i^i z ) -> ( ( A \ x ) ~<_ _om <-> ( A \ ( y i^i z ) ) ~<_ _om ) ) |
| 75 | eqeq1 | |- ( x = ( y i^i z ) -> ( x = (/) <-> ( y i^i z ) = (/) ) ) |
|
| 76 | 74 75 | orbi12d | |- ( x = ( y i^i z ) -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 77 | 76 | elrab | |- ( ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 78 | 72 77 | sylibr | |- ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 79 | 78 | rgen2 | |- A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } |
| 80 | 44 79 | pm3.2i | |- ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 81 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 82 | rabexg | |- ( ~P A e. _V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V ) |
|
| 83 | istopg | |- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) |
|
| 84 | 81 82 83 | 3syl | |- ( A e. V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) |
| 85 | 80 84 | mpbiri | |- ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top ) |
| 86 | difeq2 | |- ( x = A -> ( A \ x ) = ( A \ A ) ) |
|
| 87 | difid | |- ( A \ A ) = (/) |
|
| 88 | 86 87 | eqtrdi | |- ( x = A -> ( A \ x ) = (/) ) |
| 89 | 88 | breq1d | |- ( x = A -> ( ( A \ x ) ~<_ _om <-> (/) ~<_ _om ) ) |
| 90 | eqeq1 | |- ( x = A -> ( x = (/) <-> A = (/) ) ) |
|
| 91 | 89 90 | orbi12d | |- ( x = A -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( (/) ~<_ _om \/ A = (/) ) ) ) |
| 92 | pwidg | |- ( A e. V -> A e. ~P A ) |
|
| 93 | omex | |- _om e. _V |
|
| 94 | 93 | 0dom | |- (/) ~<_ _om |
| 95 | 94 | orci | |- ( (/) ~<_ _om \/ A = (/) ) |
| 96 | 95 | a1i | |- ( A e. V -> ( (/) ~<_ _om \/ A = (/) ) ) |
| 97 | 91 92 96 | elrabd | |- ( A e. V -> A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 98 | elssuni | |- ( A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
|
| 99 | 97 98 | syl | |- ( A e. V -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 100 | 8 | a1i | |- ( A e. V -> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) |
| 101 | 99 100 | eqssd | |- ( A e. V -> A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 102 | istopon | |- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) <-> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top /\ A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) |
|
| 103 | 85 101 102 | sylanbrc | |- ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) ) |