This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) | |
| 2 | eleq2 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) | |
| 4 | 2 3 | orbi12d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 = ∅ ) ) ) |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → 𝑦 ⊆ 𝒫 𝐴 ) | |
| 6 | sspwuni | ⊢ ( 𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ⊆ 𝐴 ) |
| 8 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 9 | 8 | elpw | ⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 10 | 7 9 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 11 | neq0 | ⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 𝑧 ∈ ∪ 𝑦 ) | |
| 12 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) | |
| 13 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) → ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) | |
| 14 | n0i | ⊢ ( 𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅ ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ¬ 𝑥 = ∅ ) |
| 16 | simpl | ⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) | |
| 17 | 16 | ord | ⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ( ¬ 𝑃 ∈ 𝑥 → 𝑥 = ∅ ) ) |
| 18 | 15 17 | mt3d | ⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → 𝑃 ∈ 𝑥 ) |
| 19 | simpl | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑥 ∈ 𝑦 ) | |
| 20 | elunii | ⊢ ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑃 ∈ ∪ 𝑦 ) | |
| 21 | 18 19 20 | syl2an2 | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑃 ∈ ∪ 𝑦 ) |
| 22 | 21 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → 𝑃 ∈ ∪ 𝑦 ) |
| 23 | 13 22 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) → 𝑃 ∈ ∪ 𝑦 ) |
| 24 | 23 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦 ) ) |
| 25 | 24 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦 ) ) |
| 26 | 12 25 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( 𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦 ) ) |
| 27 | 26 | exlimdv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ∃ 𝑧 𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦 ) ) |
| 28 | 11 27 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ¬ ∪ 𝑦 = ∅ → 𝑃 ∈ ∪ 𝑦 ) ) |
| 29 | 28 | con1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ¬ 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = ∅ ) ) |
| 30 | 29 | orrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( 𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 = ∅ ) ) |
| 31 | 4 10 30 | elrabd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 32 | 31 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
| 33 | 1 32 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
| 34 | 33 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
| 35 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) | |
| 36 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) | |
| 37 | 35 36 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ) |
| 38 | 37 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ) |
| 39 | eleq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 40 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) | |
| 41 | 39 40 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
| 42 | 41 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
| 43 | 38 42 | anbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) |
| 44 | eleq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 45 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) | |
| 46 | 44 45 | orbi12d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 47 | inss1 | ⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 | |
| 48 | simprll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → 𝑦 ∈ 𝒫 𝐴 ) | |
| 49 | 48 | elpwid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → 𝑦 ⊆ 𝐴 ) |
| 50 | 47 49 | sstrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 51 | vex | ⊢ 𝑦 ∈ V | |
| 52 | 51 | inex1 | ⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 53 | 52 | elpw | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 54 | 50 53 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 55 | ianor | ⊢ ( ¬ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ↔ ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) ) | |
| 56 | elin | ⊢ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ) | |
| 57 | 55 56 | xchnxbir | ⊢ ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) ) |
| 58 | simprlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) | |
| 59 | 58 | ord | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ 𝑦 → 𝑦 = ∅ ) ) |
| 60 | simprrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) | |
| 61 | 60 | ord | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅ ) ) |
| 62 | 59 61 | orim12d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) → ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) ) |
| 63 | 57 62 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) ) |
| 64 | inss | ⊢ ( ( 𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅ ) → ( 𝑦 ∩ 𝑧 ) ⊆ ∅ ) | |
| 65 | ss0b | ⊢ ( 𝑦 ⊆ ∅ ↔ 𝑦 = ∅ ) | |
| 66 | ss0b | ⊢ ( 𝑧 ⊆ ∅ ↔ 𝑧 = ∅ ) | |
| 67 | 65 66 | orbi12i | ⊢ ( ( 𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅ ) ↔ ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) |
| 68 | ss0b | ⊢ ( ( 𝑦 ∩ 𝑧 ) ⊆ ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) | |
| 69 | 64 67 68 | 3imtr3i | ⊢ ( ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 70 | 63 69 | syl6 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 71 | 70 | orrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 72 | 46 54 71 | elrabd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 73 | 72 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
| 74 | 43 73 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
| 75 | 74 | ralrimivv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 76 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 77 | 76 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 78 | rabexg | ⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ V ) | |
| 79 | istopg | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) ) | |
| 80 | 77 78 79 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) ) |
| 81 | 34 75 80 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ) |
| 82 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴 ) ) | |
| 83 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 84 | 82 83 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝐴 ∨ 𝐴 = ∅ ) ) ) |
| 85 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 86 | 85 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 87 | animorrl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∈ 𝐴 ∨ 𝐴 = ∅ ) ) | |
| 88 | 84 86 87 | elrabd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 89 | elssuni | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) | |
| 90 | 88 89 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 91 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 | |
| 92 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) | |
| 93 | 91 92 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
| 94 | 93 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
| 95 | 90 94 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
| 96 | istopon | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) | |
| 97 | 81 95 96 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |