This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| catpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| catpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| catpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | catpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | catpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | catpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | catpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | simpl | ⊢ ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 6 | 5 | 2ralimi | ⊢ ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 7 | 6 | 2ralimi | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 11 | simpl | ⊢ ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 12 | 11 | 2ralimi | ⊢ ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 13 | 12 | 2ralimi | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 15 | 14 | ralimi | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 17 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) | |
| 18 | nfv | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) | |
| 19 | nfra1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) | |
| 20 | nfv | ⊢ Ⅎ 𝑦 ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) | |
| 21 | nfra1 | ⊢ Ⅎ 𝑔 ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) | |
| 22 | nfv | ⊢ Ⅎ 𝑓 ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) | |
| 23 | oveq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 25 | 24 | cbvralvw | ⊢ ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 26 | oveq2 | ⊢ ( 𝑓 = 𝑔 → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑓 = 𝑔 → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 29 | 25 28 | bitrid | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 30 | 21 22 29 | cbvralw | ⊢ ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 31 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 32 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) ) | |
| 33 | 32 | oveqd | ⊢ ( 𝑧 = 𝑤 → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) = ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ) |
| 34 | oveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 35 | 33 34 | eleq12d | ⊢ ( 𝑧 = 𝑤 → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 36 | 31 35 | raleqbidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 38 | 30 37 | bitrid | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 39 | 38 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 40 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 41 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 42 | opeq2 | ⊢ ( 𝑦 = 𝑧 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑧 〉 ) | |
| 43 | 42 | oveq1d | ⊢ ( 𝑦 = 𝑧 → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) = ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ) |
| 44 | 43 | oveqd | ⊢ ( 𝑦 = 𝑧 → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ) |
| 45 | 44 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 46 | 41 45 | raleqbidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 47 | 40 46 | raleqbidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 49 | 39 48 | bitrid | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 50 | 19 20 49 | cbvralw | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 51 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 52 | opeq1 | ⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) | |
| 53 | 52 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ) |
| 54 | 53 | oveqd | ⊢ ( 𝑥 = 𝑦 → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ) |
| 55 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 56 | 54 55 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 57 | 56 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 58 | 51 57 | raleqbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 59 | 58 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 60 | ralcom | ⊢ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 61 | 59 60 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 62 | 61 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 63 | 50 62 | bitrid | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
| 64 | 17 18 63 | cbvralw | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 65 | 64 | biimpi | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
| 66 | 65 | ancri | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 67 | r19.26 | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) | |
| 68 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) | |
| 69 | r19.26 | ⊢ ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) | |
| 70 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 71 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 72 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 73 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 74 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 75 | 74 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 76 | 75 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 77 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 78 | 77 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 79 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 80 | 79 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 81 | 80 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 82 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 83 | 82 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 84 | simpllr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 85 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 86 | 85 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 87 | simpr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 88 | 70 71 72 73 76 78 81 83 84 86 87 | comfeqval | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) ) |
| 89 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 90 | 89 | ad4antr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 91 | simp-4r | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 92 | simplr | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 93 | 70 71 72 73 76 78 81 90 84 91 92 | comfeqval | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
| 94 | 88 93 | eqeq12d | ⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) |
| 95 | 94 | ex | ⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ( ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 96 | 95 | ralimdva | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 97 | ralbi | ⊢ ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) | |
| 98 | 96 97 | syl6 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 99 | 98 | ralimdva | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 100 | 99 | impancom | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 101 | 100 | impr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) |
| 102 | ralbi | ⊢ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) | |
| 103 | 101 102 | syl | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) |
| 104 | 103 | anbi2d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 105 | 104 | ex | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 106 | 105 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 107 | 69 106 | biimtrrid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 108 | 107 | expdimp | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 109 | ralbi | ⊢ ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) | |
| 110 | 108 109 | syl6 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 111 | 110 | an32s | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 112 | 111 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 113 | ralbi | ⊢ ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) | |
| 114 | 112 113 | syl6 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 115 | 114 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 116 | 115 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 117 | ralbi | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) | |
| 118 | 116 117 | syl6 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 119 | 68 118 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 120 | 119 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 121 | ralbi | ⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) | |
| 122 | 120 121 | syl6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 123 | 67 122 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 124 | 123 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 125 | 124 | an4s | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 126 | 125 | anbi2d | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 127 | 126 | expr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) ) |
| 128 | 127 | ralimdva | ⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) ) |
| 129 | 128 | expimpd | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) ) |
| 130 | ralbi | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) | |
| 131 | 66 129 130 | syl56 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) ) |
| 132 | 10 16 131 | pm5.21ndd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 133 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 134 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 135 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 136 | 70 71 134 74 135 135 | homfeqval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 137 | 133 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 138 | 74 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 139 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 140 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 141 | 70 71 134 138 139 140 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 142 | 1 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 143 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 144 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 145 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 146 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 147 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 148 | 70 71 72 73 142 143 144 145 145 146 147 | comfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) ) |
| 149 | 148 | eqeq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 150 | 141 149 | raleqbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 151 | 70 71 134 138 140 139 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 152 | 1 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 153 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 154 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 155 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 156 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 157 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 158 | 70 71 72 73 152 153 154 154 155 156 157 | comfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) ) |
| 159 | 158 | eqeq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 160 | 151 159 | raleqbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 161 | 150 160 | anbi12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 162 | 137 161 | raleqbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 163 | 136 162 | rexeqbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 164 | 133 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 165 | 164 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 166 | 74 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 167 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 168 | 70 71 134 166 79 167 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 169 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 170 | 70 71 134 166 167 169 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 171 | 170 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 172 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 173 | 70 71 72 73 75 77 80 82 89 85 172 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) |
| 174 | 70 71 134 166 79 169 | homfeqval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 175 | 174 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 176 | 173 175 | eleq12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
| 177 | 164 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 178 | 75 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 179 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 180 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 181 | 70 71 134 178 179 180 | homfeqval | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 182 | 166 | ad4antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 183 | 2 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 184 | 167 | ad4antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 185 | 169 | ad4antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 186 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 187 | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 188 | simpr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 189 | 70 71 72 73 182 183 184 185 186 187 188 | comfeqval | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) |
| 190 | 189 | oveq1d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) ) |
| 191 | 79 | ad4antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 192 | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 193 | 70 71 72 73 182 183 191 184 185 192 187 | comfeqval | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) |
| 194 | 193 | oveq2d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) |
| 195 | 190 194 | eqeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) |
| 196 | 181 195 | raleqbidva | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) |
| 197 | 177 196 | raleqbidva | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) |
| 198 | 176 197 | anbi12d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 199 | 171 198 | raleqbidva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 200 | 168 199 | raleqbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 201 | 165 200 | raleqbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 202 | 164 201 | raleqbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) |
| 203 | 163 202 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 204 | 133 203 | raleqbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 205 | 132 204 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 206 | 70 71 72 | iscat | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 207 | 3 206 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 208 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 209 | 208 134 73 | iscat | ⊢ ( 𝐷 ∈ 𝑊 → ( 𝐷 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 210 | 4 209 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 211 | 205 207 210 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |