This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a category". (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscat.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| iscat.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| iscat.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| Assertion | iscat | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscat.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | iscat.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | iscat.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | fvexd | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 | fvexd | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) ∈ V ) | |
| 8 | simpl | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → 𝑐 = 𝐶 ) | |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 10 | 9 2 | eqtr4di | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 11 | fvexd | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) ∈ V ) | |
| 12 | simpll | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → 𝑐 = 𝐶 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) |
| 14 | 13 3 | eqtr4di | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( comp ‘ 𝑐 ) = · ) |
| 15 | simpllr | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑏 = 𝐵 ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ℎ = 𝐻 ) | |
| 17 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑥 ) = ( 𝑥 𝐻 𝑥 ) ) |
| 18 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 19 | simpr | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑜 = · ) | |
| 20 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) = ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) ) |
| 21 | 20 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 23 | 18 22 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 24 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 25 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) = ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) ) |
| 26 | 25 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 28 | 24 27 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 29 | 23 28 | anbi12d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 30 | 15 29 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 31 | 17 30 | rexeqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 32 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑦 ℎ 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 33 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
| 34 | 33 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
| 35 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑥 ℎ 𝑧 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 36 | 34 35 | eleq12d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 37 | 16 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑧 ℎ 𝑤 ) = ( 𝑧 𝐻 𝑤 ) ) |
| 38 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) ) |
| 39 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ) |
| 40 | 39 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ) |
| 41 | eqidd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑓 = 𝑓 ) | |
| 42 | 38 40 41 | oveq123d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) ) |
| 43 | 19 | oveqd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) = ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ) |
| 44 | eqidd | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → 𝑘 = 𝑘 ) | |
| 45 | 43 44 34 | oveq123d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 46 | 42 45 | eqeq12d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
| 47 | 37 46 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
| 48 | 15 47 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) |
| 49 | 36 48 | anbi12d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 50 | 32 49 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 51 | 24 50 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 52 | 15 51 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 53 | 15 52 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 54 | 31 53 | anbi12d | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 55 | 15 54 | raleqbidv | ⊢ ( ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) ∧ 𝑜 = · ) → ( ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 56 | 11 14 55 | sbcied2 | ⊢ ( ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) ∧ ℎ = 𝐻 ) → ( [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 57 | 7 10 56 | sbcied2 | ⊢ ( ( 𝑐 = 𝐶 ∧ 𝑏 = 𝐵 ) → ( [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 58 | 4 6 57 | sbcied2 | ⊢ ( 𝑐 = 𝐶 → ( [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 59 | df-cat | ⊢ Cat = { 𝑐 ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] [ ( comp ‘ 𝑐 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ( ∃ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑏 ∀ 𝑘 ∈ ( 𝑧 ℎ 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 𝑜 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 𝑜 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 𝑜 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 𝑜 𝑧 ) 𝑓 ) ) ) ) } | |
| 60 | 58 59 | elab2g | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |