This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeqval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| comfeqval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comfeqval.1 | ⊢ · = ( comp ‘ 𝐶 ) | ||
| comfeqval.2 | ⊢ ∙ = ( comp ‘ 𝐷 ) | ||
| comfeqval.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| comfeqval.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| comfeqval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| comfeqval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| comfeqval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| comfeqval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| comfeqval.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| Assertion | comfeqval | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | comfeqval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | comfeqval.1 | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | comfeqval.2 | ⊢ ∙ = ( comp ‘ 𝐷 ) | |
| 5 | comfeqval.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 6 | comfeqval.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 7 | comfeqval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | comfeqval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | comfeqval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 10 | comfeqval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 11 | comfeqval.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 12 | 6 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) = ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) ) |
| 13 | 12 | oveqd | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) 𝐹 ) ) |
| 14 | eqid | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) | |
| 15 | 14 1 2 3 7 8 9 10 11 | comfval | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 16 | eqid | ⊢ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 18 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 19 | 5 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 20 | 1 19 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 21 | 7 20 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 22 | 8 20 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 23 | 9 20 | eleqtrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐷 ) ) |
| 24 | 1 2 18 5 7 8 | homfeqval | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 25 | 10 24 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 26 | 1 2 18 5 8 9 | homfeqval | ⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) ) |
| 27 | 11 26 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) ) |
| 28 | 16 17 18 4 21 22 23 25 27 | comfval | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( compf ‘ 𝐷 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝐹 ) ) |
| 29 | 13 15 28 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝐹 ) ) |