This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation have the same identity function. (Contributed by Mario Carneiro, 17-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| catpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| catpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| catpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | cidpropd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | catpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | catpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | catpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | 1 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 11 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 12 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 13 | 7 8 9 10 11 12 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 14 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 15 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 16 | 1 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 17 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 18 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 19 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 21 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 22 | 7 8 14 15 16 17 18 19 19 20 21 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) ) |
| 23 | 22 | eqeq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 24 | 13 23 | raleqbidva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 25 | 7 8 9 10 12 11 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 26 | 10 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 27 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 28 | 12 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 29 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 30 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 31 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 32 | 7 8 14 15 26 27 28 28 29 30 31 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) ) |
| 33 | 32 | eqeq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 34 | 25 33 | raleqbidva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 35 | 24 34 | anbi12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 36 | 35 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 37 | 36 | riotabidva | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 38 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 39 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 40 | 7 8 9 38 39 39 | homfeqval | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 41 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 42 | 41 | raleqdv | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 43 | 40 42 | riotaeqbidv | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 44 | 37 43 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ Cat ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 45 | 6 44 | mpteq12dva | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 46 | simpr | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 47 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 48 | 7 8 14 46 47 | cidfval | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 49 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 50 | 1 2 3 4 | catpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 51 | 50 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → 𝐷 ∈ Cat ) |
| 52 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 53 | 49 9 15 51 52 | cidfval | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐷 ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 54 | 45 48 53 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐶 ∈ Cat ) | |
| 56 | cidffn | ⊢ Id Fn Cat | |
| 57 | 56 | fndmi | ⊢ dom Id = Cat |
| 58 | 57 | eleq2i | ⊢ ( 𝐶 ∈ dom Id ↔ 𝐶 ∈ Cat ) |
| 59 | 55 58 | sylnibr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐶 ∈ dom Id ) |
| 60 | ndmfv | ⊢ ( ¬ 𝐶 ∈ dom Id → ( Id ‘ 𝐶 ) = ∅ ) | |
| 61 | 59 60 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ∅ ) |
| 62 | 57 | eleq2i | ⊢ ( 𝐷 ∈ dom Id ↔ 𝐷 ∈ Cat ) |
| 63 | 50 62 | bitr4di | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ dom Id ) ) |
| 64 | 63 | notbid | ⊢ ( 𝜑 → ( ¬ 𝐶 ∈ Cat ↔ ¬ 𝐷 ∈ dom Id ) ) |
| 65 | 64 | biimpa | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ¬ 𝐷 ∈ dom Id ) |
| 66 | ndmfv | ⊢ ( ¬ 𝐷 ∈ dom Id → ( Id ‘ 𝐷 ) = ∅ ) | |
| 67 | 65 66 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐷 ) = ∅ ) |
| 68 | 61 67 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ Cat ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 69 | 54 68 | pm2.61dan | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |