This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homfeqval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| homfeqval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| homfeqval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| homfeqval.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| homfeqval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| homfeqval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | homfeqval | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐽 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | homfeqval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | homfeqval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 4 | homfeqval.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 5 | homfeqval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | homfeqval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 4 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Homf ‘ 𝐷 ) 𝑌 ) ) |
| 8 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 9 | 8 1 2 5 6 | homfval | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 10 | eqid | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 12 | 4 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 13 | 1 12 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 14 | 5 13 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 15 | 6 13 | eleqtrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 16 | 10 11 3 14 15 | homfval | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐷 ) 𝑌 ) = ( 𝑋 𝐽 𝑌 ) ) |
| 17 | 7 9 16 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐽 𝑌 ) ) |