This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| c1lip2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| c1lip2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | ||
| c1lip2.rn | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) | ||
| c1lip2.dm | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) | ||
| Assertion | c1lip2 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | c1lip2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | c1lip2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | |
| 4 | c1lip2.rn | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) | |
| 5 | c1lip2.dm | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) | |
| 6 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | elcpn | ⊢ ( ( ℝ ⊆ ℂ ∧ 1 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 10 | 9 | simplbi | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 12 | pmfun | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → Fun 𝐹 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 14 | 13 | funfnd | ⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 15 | df-f | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℝ ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) ) | |
| 16 | 14 4 15 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 17 | cnex | ⊢ ℂ ∈ V | |
| 18 | reex | ⊢ ℝ ∈ V | |
| 19 | 17 18 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 20 | 19 | simprbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → dom 𝐹 ⊆ ℝ ) |
| 21 | 11 20 | syl | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 22 | dvfre | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) | |
| 23 | 16 21 22 | syl2anc | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 24 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 25 | 24 | fveq2i | ⊢ ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) |
| 26 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 27 | dvnp1 | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 0 ∈ ℕ0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) ) | |
| 28 | 6 26 27 | mp3an13 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) ) |
| 29 | 11 28 | syl | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ ( 0 + 1 ) ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) ) |
| 30 | 25 29 | eqtr3id | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) = ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) ) |
| 31 | dvn0 | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) | |
| 32 | 6 11 31 | sylancr | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 33 | 32 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ) = ( ℝ D 𝐹 ) ) |
| 34 | 30 33 | eqtrd | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) = ( ℝ D 𝐹 ) ) |
| 35 | 9 | simprbi | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 36 | 3 35 | syl | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 1 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 37 | 34 36 | eqeltrrd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 38 | cncff | ⊢ ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℂ ) → ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℂ ) | |
| 39 | fdm | ⊢ ( ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℂ → dom ( ℝ D 𝐹 ) = dom 𝐹 ) | |
| 40 | 37 38 39 | 3syl | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = dom 𝐹 ) |
| 41 | 40 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) ) |
| 42 | 23 41 | mpbid | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 43 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℝ ) ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) ) | |
| 44 | 6 37 43 | sylancr | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℝ ) ↔ ( ℝ D 𝐹 ) : dom 𝐹 ⟶ ℝ ) ) |
| 45 | 42 44 | mpbird | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℝ ) ) |
| 46 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 → ( ( ℝ D 𝐹 ) ∈ ( dom 𝐹 –cn→ ℝ ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) ) | |
| 47 | 5 45 46 | sylc | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 48 | 18 | prid1 | ⊢ ℝ ∈ { ℝ , ℂ } |
| 49 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 50 | cpnord | ⊢ ( ( ℝ ∈ { ℝ , ℂ } ∧ 0 ∈ ℕ0 ∧ 1 ∈ ( ℤ≥ ‘ 0 ) ) → ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ⊆ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ) | |
| 51 | 48 26 49 50 | mp3an | ⊢ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ⊆ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) |
| 52 | 51 3 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ) |
| 53 | elcpn | ⊢ ( ( ℝ ⊆ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) | |
| 54 | 6 26 53 | mp2an | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 55 | 54 | simprbi | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 0 ) → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 56 | 52 55 | syl | ⊢ ( 𝜑 → ( ( ℝ D𝑛 𝐹 ) ‘ 0 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 57 | 32 56 | eqeltrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 58 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( dom 𝐹 –cn→ ℂ ) ) → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℝ ) ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) ) | |
| 59 | 6 57 58 | sylancr | ⊢ ( 𝜑 → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℝ ) ↔ 𝐹 : dom 𝐹 ⟶ ℝ ) ) |
| 60 | 16 59 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝐹 –cn→ ℝ ) ) |
| 61 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 → ( 𝐹 ∈ ( dom 𝐹 –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) ) | |
| 62 | 5 60 61 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 63 | 1 2 11 47 62 | c1lip1 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |