This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^n conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnord | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑛 = 𝑀 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) | |
| 2 | 1 | sseq1d | ⊢ ( 𝑛 = 𝑀 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑛 = 𝑀 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) | |
| 5 | 4 | sseq1d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ) | |
| 8 | 7 | sseq1d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) = ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) | |
| 11 | 10 | sseq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ↔ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑛 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 13 | ssid | ⊢ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) | |
| 14 | 13 | 2a1i | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 15 | simprl | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 16 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
| 18 | 17 | adantr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ⊆ ℂ ) |
| 19 | simplll | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 20 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) | |
| 21 | 20 | adantll | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ℕ0 ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → 𝑚 ∈ ℕ0 ) |
| 23 | dvnf | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) | |
| 24 | 19 15 22 23 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ) |
| 25 | dvnbss | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) | |
| 26 | 19 15 22 25 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ dom 𝑓 ) |
| 27 | dvnp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) | |
| 28 | 18 15 22 27 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ) |
| 29 | simprr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) | |
| 30 | 28 29 | eqeltrrd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 31 | cncff | ⊢ ( ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) : dom 𝑓 ⟶ ℂ ) |
| 33 | 32 | fdmd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) |
| 34 | cnex | ⊢ ℂ ∈ V | |
| 35 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) | |
| 36 | 34 19 35 | sylancr | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) ) |
| 37 | 15 36 | mpbid | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ) |
| 38 | 37 | simprd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ 𝑆 ) |
| 39 | 26 38 | sstrd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⊆ 𝑆 ) |
| 40 | 18 24 39 | dvbss | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
| 41 | 33 40 | eqsstrrd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom 𝑓 ⊆ dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) |
| 42 | 26 41 | eqssd | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) = dom 𝑓 ) |
| 43 | 42 | feq2d | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ⟶ ℂ ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) ) |
| 44 | 24 43 | mpbid | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ) |
| 45 | dvcn | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) : dom 𝑓 ⟶ ℂ ∧ dom 𝑓 ⊆ 𝑆 ) ∧ dom ( 𝑆 D ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ) = dom 𝑓 ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) | |
| 46 | 18 44 38 33 45 | syl31anc | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) |
| 47 | 15 46 | jca | ⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
| 48 | 47 | ex | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) → ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 49 | peano2nn0 | ⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) | |
| 50 | 21 49 | syl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 51 | elcpn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑚 + 1 ) ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) | |
| 52 | 17 50 51 | syl2anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ ( 𝑚 + 1 ) ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 53 | elcpn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) | |
| 54 | 17 21 53 | syl2anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ↔ ( 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑚 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) ) |
| 55 | 48 52 54 | 3imtr4d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) → 𝑓 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) ) |
| 56 | 55 | ssrdv | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ) |
| 57 | sstr2 | ⊢ ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 59 | 58 | expcom | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 60 | 59 | a2d | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑚 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ ( 𝑚 + 1 ) ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) ) |
| 61 | 3 6 9 12 14 60 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 62 | 61 | com12 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) ) |
| 63 | 62 | 3impia | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ⊆ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑀 ) ) |