This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip2.a | |- ( ph -> A e. RR ) |
|
| c1lip2.b | |- ( ph -> B e. RR ) |
||
| c1lip2.f | |- ( ph -> F e. ( ( C^n ` RR ) ` 1 ) ) |
||
| c1lip2.rn | |- ( ph -> ran F C_ RR ) |
||
| c1lip2.dm | |- ( ph -> ( A [,] B ) C_ dom F ) |
||
| Assertion | c1lip2 | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip2.a | |- ( ph -> A e. RR ) |
|
| 2 | c1lip2.b | |- ( ph -> B e. RR ) |
|
| 3 | c1lip2.f | |- ( ph -> F e. ( ( C^n ` RR ) ` 1 ) ) |
|
| 4 | c1lip2.rn | |- ( ph -> ran F C_ RR ) |
|
| 5 | c1lip2.dm | |- ( ph -> ( A [,] B ) C_ dom F ) |
|
| 6 | ax-resscn | |- RR C_ CC |
|
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | elcpn | |- ( ( RR C_ CC /\ 1 e. NN0 ) -> ( F e. ( ( C^n ` RR ) ` 1 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( F e. ( ( C^n ` RR ) ` 1 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) ) |
| 10 | 9 | simplbi | |- ( F e. ( ( C^n ` RR ) ` 1 ) -> F e. ( CC ^pm RR ) ) |
| 11 | 3 10 | syl | |- ( ph -> F e. ( CC ^pm RR ) ) |
| 12 | pmfun | |- ( F e. ( CC ^pm RR ) -> Fun F ) |
|
| 13 | 11 12 | syl | |- ( ph -> Fun F ) |
| 14 | 13 | funfnd | |- ( ph -> F Fn dom F ) |
| 15 | df-f | |- ( F : dom F --> RR <-> ( F Fn dom F /\ ran F C_ RR ) ) |
|
| 16 | 14 4 15 | sylanbrc | |- ( ph -> F : dom F --> RR ) |
| 17 | cnex | |- CC e. _V |
|
| 18 | reex | |- RR e. _V |
|
| 19 | 17 18 | elpm2 | |- ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 20 | 19 | simprbi | |- ( F e. ( CC ^pm RR ) -> dom F C_ RR ) |
| 21 | 11 20 | syl | |- ( ph -> dom F C_ RR ) |
| 22 | dvfre | |- ( ( F : dom F --> RR /\ dom F C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 23 | 16 21 22 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 24 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 25 | 24 | fveq2i | |- ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( ( RR Dn F ) ` 1 ) |
| 26 | 0nn0 | |- 0 e. NN0 |
|
| 27 | dvnp1 | |- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ 0 e. NN0 ) -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) |
|
| 28 | 6 26 27 | mp3an13 | |- ( F e. ( CC ^pm RR ) -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) |
| 29 | 11 28 | syl | |- ( ph -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) |
| 30 | 25 29 | eqtr3id | |- ( ph -> ( ( RR Dn F ) ` 1 ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) |
| 31 | dvn0 | |- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) |
|
| 32 | 6 11 31 | sylancr | |- ( ph -> ( ( RR Dn F ) ` 0 ) = F ) |
| 33 | 32 | oveq2d | |- ( ph -> ( RR _D ( ( RR Dn F ) ` 0 ) ) = ( RR _D F ) ) |
| 34 | 30 33 | eqtrd | |- ( ph -> ( ( RR Dn F ) ` 1 ) = ( RR _D F ) ) |
| 35 | 9 | simprbi | |- ( F e. ( ( C^n ` RR ) ` 1 ) -> ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) |
| 36 | 3 35 | syl | |- ( ph -> ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) |
| 37 | 34 36 | eqeltrrd | |- ( ph -> ( RR _D F ) e. ( dom F -cn-> CC ) ) |
| 38 | cncff | |- ( ( RR _D F ) e. ( dom F -cn-> CC ) -> ( RR _D F ) : dom F --> CC ) |
|
| 39 | fdm | |- ( ( RR _D F ) : dom F --> CC -> dom ( RR _D F ) = dom F ) |
|
| 40 | 37 38 39 | 3syl | |- ( ph -> dom ( RR _D F ) = dom F ) |
| 41 | 40 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : dom F --> RR ) ) |
| 42 | 23 41 | mpbid | |- ( ph -> ( RR _D F ) : dom F --> RR ) |
| 43 | cncfcdm | |- ( ( RR C_ CC /\ ( RR _D F ) e. ( dom F -cn-> CC ) ) -> ( ( RR _D F ) e. ( dom F -cn-> RR ) <-> ( RR _D F ) : dom F --> RR ) ) |
|
| 44 | 6 37 43 | sylancr | |- ( ph -> ( ( RR _D F ) e. ( dom F -cn-> RR ) <-> ( RR _D F ) : dom F --> RR ) ) |
| 45 | 42 44 | mpbird | |- ( ph -> ( RR _D F ) e. ( dom F -cn-> RR ) ) |
| 46 | rescncf | |- ( ( A [,] B ) C_ dom F -> ( ( RR _D F ) e. ( dom F -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) |
|
| 47 | 5 45 46 | sylc | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 48 | 18 | prid1 | |- RR e. { RR , CC } |
| 49 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 50 | cpnord | |- ( ( RR e. { RR , CC } /\ 0 e. NN0 /\ 1 e. ( ZZ>= ` 0 ) ) -> ( ( C^n ` RR ) ` 1 ) C_ ( ( C^n ` RR ) ` 0 ) ) |
|
| 51 | 48 26 49 50 | mp3an | |- ( ( C^n ` RR ) ` 1 ) C_ ( ( C^n ` RR ) ` 0 ) |
| 52 | 51 3 | sselid | |- ( ph -> F e. ( ( C^n ` RR ) ` 0 ) ) |
| 53 | elcpn | |- ( ( RR C_ CC /\ 0 e. NN0 ) -> ( F e. ( ( C^n ` RR ) ` 0 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) |
|
| 54 | 6 26 53 | mp2an | |- ( F e. ( ( C^n ` RR ) ` 0 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) |
| 55 | 54 | simprbi | |- ( F e. ( ( C^n ` RR ) ` 0 ) -> ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) |
| 56 | 52 55 | syl | |- ( ph -> ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) |
| 57 | 32 56 | eqeltrrd | |- ( ph -> F e. ( dom F -cn-> CC ) ) |
| 58 | cncfcdm | |- ( ( RR C_ CC /\ F e. ( dom F -cn-> CC ) ) -> ( F e. ( dom F -cn-> RR ) <-> F : dom F --> RR ) ) |
|
| 59 | 6 57 58 | sylancr | |- ( ph -> ( F e. ( dom F -cn-> RR ) <-> F : dom F --> RR ) ) |
| 60 | 16 59 | mpbird | |- ( ph -> F e. ( dom F -cn-> RR ) ) |
| 61 | rescncf | |- ( ( A [,] B ) C_ dom F -> ( F e. ( dom F -cn-> RR ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) |
|
| 62 | 5 60 61 | sylc | |- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 63 | 1 2 11 47 62 | c1lip1 | |- ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |