This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1lip3.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| c1lip3.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| c1lip3.f | ⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | ||
| c1lip3.rn | ⊢ ( 𝜑 → ( 𝐹 “ ℝ ) ⊆ ℝ ) | ||
| c1lip3.dm | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) | ||
| Assertion | c1lip3 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1lip3.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | c1lip3.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | c1lip3.f | ⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | |
| 4 | c1lip3.rn | ⊢ ( 𝜑 → ( 𝐹 “ ℝ ) ⊆ ℝ ) | |
| 5 | c1lip3.dm | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom 𝐹 ) | |
| 6 | df-ima | ⊢ ( 𝐹 “ ℝ ) = ran ( 𝐹 ↾ ℝ ) | |
| 7 | 6 4 | eqsstrrid | ⊢ ( 𝜑 → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) |
| 8 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 10 | 9 5 | ssind | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( ℝ ∩ dom 𝐹 ) ) |
| 11 | dmres | ⊢ dom ( 𝐹 ↾ ℝ ) = ( ℝ ∩ dom 𝐹 ) | |
| 12 | 10 11 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ dom ( 𝐹 ↾ ℝ ) ) |
| 13 | 1 2 3 7 12 | c1lip2 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |
| 14 | 9 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ ) ) |
| 15 | 9 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → 𝑦 ∈ ℝ ) ) |
| 16 | 14 15 | anim12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) ) |
| 17 | 16 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 18 | fvres | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 19 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 20 | 18 19 | oveqan12rd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 22 | 21 | breq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 23 | 22 | biimpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 24 | 17 23 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 25 | 24 | ralimdvva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 26 | 25 | reximdv | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( ( 𝐹 ↾ ℝ ) ‘ 𝑦 ) − ( ( 𝐹 ↾ ℝ ) ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) ) |
| 27 | 13 26 | mpd | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑘 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ) |