This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| Assertion | blssioo | ⊢ ran ( ball ‘ 𝐷 ) ⊆ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 2 | 1 | rexmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ ) |
| 3 | blrn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ ℝ ) → ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 5 | elxr | ⊢ ( 𝑟 ∈ ℝ* ↔ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) ) | |
| 6 | 1 | bl2ioo | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ) |
| 7 | resubcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 − 𝑟 ) ∈ ℝ ) | |
| 8 | readdcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 + 𝑟 ) ∈ ℝ ) | |
| 9 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 10 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 11 | 9 10 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 12 | rexr | ⊢ ( ( 𝑦 − 𝑟 ) ∈ ℝ → ( 𝑦 − 𝑟 ) ∈ ℝ* ) | |
| 13 | rexr | ⊢ ( ( 𝑦 + 𝑟 ) ∈ ℝ → ( 𝑦 + 𝑟 ) ∈ ℝ* ) | |
| 14 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ ( 𝑦 − 𝑟 ) ∈ ℝ* ∧ ( 𝑦 + 𝑟 ) ∈ ℝ* ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) | |
| 15 | 11 12 13 14 | mp3an3an | ⊢ ( ( ( 𝑦 − 𝑟 ) ∈ ℝ ∧ ( 𝑦 + 𝑟 ) ∈ ℝ ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) |
| 16 | 7 8 15 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑦 − 𝑟 ) (,) ( 𝑦 + 𝑟 ) ) ∈ ran (,) ) |
| 17 | 6 16 | eqeltrd | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
| 18 | oveq2 | ⊢ ( 𝑟 = +∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) ) | |
| 19 | 1 | remet | ⊢ 𝐷 ∈ ( Met ‘ ℝ ) |
| 20 | blpnf | ⊢ ( ( 𝐷 ∈ ( Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ ) | |
| 21 | 19 20 | mpan | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) +∞ ) = ℝ ) |
| 22 | 18 21 | sylan9eqr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ℝ ) |
| 23 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 24 | ioorebas | ⊢ ( -∞ (,) +∞ ) ∈ ran (,) | |
| 25 | 23 24 | eqeltrri | ⊢ ℝ ∈ ran (,) |
| 26 | 22 25 | eqeltrdi | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = +∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
| 27 | oveq2 | ⊢ ( 𝑟 = -∞ → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ) | |
| 28 | 0xr | ⊢ 0 ∈ ℝ* | |
| 29 | nltmnf | ⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) | |
| 30 | 28 29 | ax-mp | ⊢ ¬ 0 < -∞ |
| 31 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 32 | xbln0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) ) | |
| 33 | 2 31 32 | mp3an13 | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) ≠ ∅ ↔ 0 < -∞ ) ) |
| 34 | 33 | necon1bbid | ⊢ ( 𝑦 ∈ ℝ → ( ¬ 0 < -∞ ↔ ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ ) ) |
| 35 | 30 34 | mpbii | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ( ball ‘ 𝐷 ) -∞ ) = ∅ ) |
| 36 | 27 35 | sylan9eqr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ∅ ) |
| 37 | iooid | ⊢ ( 0 (,) 0 ) = ∅ | |
| 38 | ioorebas | ⊢ ( 0 (,) 0 ) ∈ ran (,) | |
| 39 | 37 38 | eqeltrri | ⊢ ∅ ∈ ran (,) |
| 40 | 36 39 | eqeltrdi | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 = -∞ ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
| 41 | 17 26 40 | 3jaodan | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
| 42 | 5 41 | sylan2b | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) |
| 43 | eleq1 | ⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑧 ∈ ran (,) ↔ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran (,) ) ) | |
| 44 | 42 43 | syl5ibrcom | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) ) ) |
| 45 | 44 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑟 ∈ ℝ* 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑧 ∈ ran (,) ) |
| 46 | 4 45 | sylbi | ⊢ ( 𝑧 ∈ ran ( ball ‘ 𝐷 ) → 𝑧 ∈ ran (,) ) |
| 47 | 46 | ssriv | ⊢ ran ( ball ‘ 𝐷 ) ⊆ ran (,) |