This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blpnf | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | xblpnf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 4 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) | |
| 5 | 4 | 3expia | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 → ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) |
| 6 | 5 | pm4.71d | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 7 | 3 6 | bitr4d | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 8 | 7 | eqrdv | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑋 ) |