This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | blssioo | |- ran ( ball ` D ) C_ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | 1 | rexmet | |- D e. ( *Met ` RR ) |
| 3 | blrn | |- ( D e. ( *Met ` RR ) -> ( z e. ran ( ball ` D ) <-> E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( z e. ran ( ball ` D ) <-> E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) ) |
| 5 | elxr | |- ( r e. RR* <-> ( r e. RR \/ r = +oo \/ r = -oo ) ) |
|
| 6 | 1 | bl2ioo | |- ( ( y e. RR /\ r e. RR ) -> ( y ( ball ` D ) r ) = ( ( y - r ) (,) ( y + r ) ) ) |
| 7 | resubcl | |- ( ( y e. RR /\ r e. RR ) -> ( y - r ) e. RR ) |
|
| 8 | readdcl | |- ( ( y e. RR /\ r e. RR ) -> ( y + r ) e. RR ) |
|
| 9 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 10 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 11 | 9 10 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 12 | rexr | |- ( ( y - r ) e. RR -> ( y - r ) e. RR* ) |
|
| 13 | rexr | |- ( ( y + r ) e. RR -> ( y + r ) e. RR* ) |
|
| 14 | fnovrn | |- ( ( (,) Fn ( RR* X. RR* ) /\ ( y - r ) e. RR* /\ ( y + r ) e. RR* ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
|
| 15 | 11 12 13 14 | mp3an3an | |- ( ( ( y - r ) e. RR /\ ( y + r ) e. RR ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
| 16 | 7 8 15 | syl2anc | |- ( ( y e. RR /\ r e. RR ) -> ( ( y - r ) (,) ( y + r ) ) e. ran (,) ) |
| 17 | 6 16 | eqeltrd | |- ( ( y e. RR /\ r e. RR ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
| 18 | oveq2 | |- ( r = +oo -> ( y ( ball ` D ) r ) = ( y ( ball ` D ) +oo ) ) |
|
| 19 | 1 | remet | |- D e. ( Met ` RR ) |
| 20 | blpnf | |- ( ( D e. ( Met ` RR ) /\ y e. RR ) -> ( y ( ball ` D ) +oo ) = RR ) |
|
| 21 | 19 20 | mpan | |- ( y e. RR -> ( y ( ball ` D ) +oo ) = RR ) |
| 22 | 18 21 | sylan9eqr | |- ( ( y e. RR /\ r = +oo ) -> ( y ( ball ` D ) r ) = RR ) |
| 23 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 24 | ioorebas | |- ( -oo (,) +oo ) e. ran (,) |
|
| 25 | 23 24 | eqeltrri | |- RR e. ran (,) |
| 26 | 22 25 | eqeltrdi | |- ( ( y e. RR /\ r = +oo ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
| 27 | oveq2 | |- ( r = -oo -> ( y ( ball ` D ) r ) = ( y ( ball ` D ) -oo ) ) |
|
| 28 | 0xr | |- 0 e. RR* |
|
| 29 | nltmnf | |- ( 0 e. RR* -> -. 0 < -oo ) |
|
| 30 | 28 29 | ax-mp | |- -. 0 < -oo |
| 31 | mnfxr | |- -oo e. RR* |
|
| 32 | xbln0 | |- ( ( D e. ( *Met ` RR ) /\ y e. RR /\ -oo e. RR* ) -> ( ( y ( ball ` D ) -oo ) =/= (/) <-> 0 < -oo ) ) |
|
| 33 | 2 31 32 | mp3an13 | |- ( y e. RR -> ( ( y ( ball ` D ) -oo ) =/= (/) <-> 0 < -oo ) ) |
| 34 | 33 | necon1bbid | |- ( y e. RR -> ( -. 0 < -oo <-> ( y ( ball ` D ) -oo ) = (/) ) ) |
| 35 | 30 34 | mpbii | |- ( y e. RR -> ( y ( ball ` D ) -oo ) = (/) ) |
| 36 | 27 35 | sylan9eqr | |- ( ( y e. RR /\ r = -oo ) -> ( y ( ball ` D ) r ) = (/) ) |
| 37 | iooid | |- ( 0 (,) 0 ) = (/) |
|
| 38 | ioorebas | |- ( 0 (,) 0 ) e. ran (,) |
|
| 39 | 37 38 | eqeltrri | |- (/) e. ran (,) |
| 40 | 36 39 | eqeltrdi | |- ( ( y e. RR /\ r = -oo ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
| 41 | 17 26 40 | 3jaodan | |- ( ( y e. RR /\ ( r e. RR \/ r = +oo \/ r = -oo ) ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
| 42 | 5 41 | sylan2b | |- ( ( y e. RR /\ r e. RR* ) -> ( y ( ball ` D ) r ) e. ran (,) ) |
| 43 | eleq1 | |- ( z = ( y ( ball ` D ) r ) -> ( z e. ran (,) <-> ( y ( ball ` D ) r ) e. ran (,) ) ) |
|
| 44 | 42 43 | syl5ibrcom | |- ( ( y e. RR /\ r e. RR* ) -> ( z = ( y ( ball ` D ) r ) -> z e. ran (,) ) ) |
| 45 | 44 | rexlimivv | |- ( E. y e. RR E. r e. RR* z = ( y ( ball ` D ) r ) -> z e. ran (,) ) |
| 46 | 4 45 | sylbi | |- ( z e. ran ( ball ` D ) -> z e. ran (,) ) |
| 47 | 46 | ssriv | |- ran ( ball ` D ) C_ ran (,) |