This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axcc2 . (Contributed by Mario Carneiro, 8-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcc2lem.1 | ⊢ 𝐾 = ( 𝑛 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) | |
| axcc2lem.2 | ⊢ 𝐴 = ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) | ||
| axcc2lem.3 | ⊢ 𝐺 = ( 𝑛 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) | ||
| Assertion | axcc2lem | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcc2lem.1 | ⊢ 𝐾 = ( 𝑛 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) | |
| 2 | axcc2lem.2 | ⊢ 𝐴 = ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) | |
| 3 | axcc2lem.3 | ⊢ 𝐺 = ( 𝑛 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 4 | fvex | ⊢ ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ V | |
| 5 | 4 3 | fnmpti | ⊢ 𝐺 Fn ω |
| 6 | vsnex | ⊢ { 𝑛 } ∈ V | |
| 7 | fvex | ⊢ ( 𝐾 ‘ 𝑛 ) ∈ V | |
| 8 | 6 7 | xpex | ⊢ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ∈ V |
| 9 | 2 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ω ∧ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ∈ V ) → ( 𝐴 ‘ 𝑛 ) = ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) |
| 10 | 8 9 | mpan2 | ⊢ ( 𝑛 ∈ ω → ( 𝐴 ‘ 𝑛 ) = ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) |
| 11 | vex | ⊢ 𝑛 ∈ V | |
| 12 | 11 | snnz | ⊢ { 𝑛 } ≠ ∅ |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 13 | snnz | ⊢ { ∅ } ≠ ∅ |
| 15 | iftrue | ⊢ ( ( 𝐹 ‘ 𝑛 ) = ∅ → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) = { ∅ } ) | |
| 16 | 15 | neeq1d | ⊢ ( ( 𝐹 ‘ 𝑛 ) = ∅ → ( if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ≠ ∅ ↔ { ∅ } ≠ ∅ ) ) |
| 17 | 14 16 | mpbiri | ⊢ ( ( 𝐹 ‘ 𝑛 ) = ∅ → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ≠ ∅ ) |
| 18 | iffalse | ⊢ ( ¬ ( 𝐹 ‘ 𝑛 ) = ∅ → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 19 | neqne | ⊢ ( ¬ ( 𝐹 ‘ 𝑛 ) = ∅ → ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) | |
| 20 | 18 19 | eqnetrd | ⊢ ( ¬ ( 𝐹 ‘ 𝑛 ) = ∅ → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ≠ ∅ ) |
| 21 | 17 20 | pm2.61i | ⊢ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ≠ ∅ |
| 22 | p0ex | ⊢ { ∅ } ∈ V | |
| 23 | fvex | ⊢ ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 24 | 22 23 | ifex | ⊢ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ∈ V |
| 25 | 1 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ω ∧ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ∈ V ) → ( 𝐾 ‘ 𝑛 ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 26 | 24 25 | mpan2 | ⊢ ( 𝑛 ∈ ω → ( 𝐾 ‘ 𝑛 ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 27 | 26 | neeq1d | ⊢ ( 𝑛 ∈ ω → ( ( 𝐾 ‘ 𝑛 ) ≠ ∅ ↔ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ≠ ∅ ) ) |
| 28 | 21 27 | mpbiri | ⊢ ( 𝑛 ∈ ω → ( 𝐾 ‘ 𝑛 ) ≠ ∅ ) |
| 29 | xpnz | ⊢ ( ( { 𝑛 } ≠ ∅ ∧ ( 𝐾 ‘ 𝑛 ) ≠ ∅ ) ↔ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ≠ ∅ ) | |
| 30 | 29 | biimpi | ⊢ ( ( { 𝑛 } ≠ ∅ ∧ ( 𝐾 ‘ 𝑛 ) ≠ ∅ ) → ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ≠ ∅ ) |
| 31 | 12 28 30 | sylancr | ⊢ ( 𝑛 ∈ ω → ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ≠ ∅ ) |
| 32 | 10 31 | eqnetrd | ⊢ ( 𝑛 ∈ ω → ( 𝐴 ‘ 𝑛 ) ≠ ∅ ) |
| 33 | 8 2 | fnmpti | ⊢ 𝐴 Fn ω |
| 34 | fnfvelrn | ⊢ ( ( 𝐴 Fn ω ∧ 𝑛 ∈ ω ) → ( 𝐴 ‘ 𝑛 ) ∈ ran 𝐴 ) | |
| 35 | 33 34 | mpan | ⊢ ( 𝑛 ∈ ω → ( 𝐴 ‘ 𝑛 ) ∈ ran 𝐴 ) |
| 36 | neeq1 | ⊢ ( 𝑧 = ( 𝐴 ‘ 𝑛 ) → ( 𝑧 ≠ ∅ ↔ ( 𝐴 ‘ 𝑛 ) ≠ ∅ ) ) | |
| 37 | fveq2 | ⊢ ( 𝑧 = ( 𝐴 ‘ 𝑛 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 38 | id | ⊢ ( 𝑧 = ( 𝐴 ‘ 𝑛 ) → 𝑧 = ( 𝐴 ‘ 𝑛 ) ) | |
| 39 | 37 38 | eleq12d | ⊢ ( 𝑧 = ( 𝐴 ‘ 𝑛 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) ) |
| 40 | 36 39 | imbi12d | ⊢ ( 𝑧 = ( 𝐴 ‘ 𝑛 ) → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( ( 𝐴 ‘ 𝑛 ) ≠ ∅ → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 41 | 40 | rspccv | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝐴 ‘ 𝑛 ) ∈ ran 𝐴 → ( ( 𝐴 ‘ 𝑛 ) ≠ ∅ → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 42 | 35 41 | syl5 | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑛 ∈ ω → ( ( 𝐴 ‘ 𝑛 ) ≠ ∅ → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 43 | 32 42 | mpdi | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑛 ∈ ω → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) ) |
| 44 | 43 | impcom | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ) |
| 45 | 10 | eleq2d | ⊢ ( 𝑛 ∈ ω → ( ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ↔ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 𝐴 ‘ 𝑛 ) ↔ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ) |
| 47 | 44 46 | mpbid | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) |
| 48 | xp2nd | ⊢ ( ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) → ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ( 𝐾 ‘ 𝑛 ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ( 𝐾 ‘ 𝑛 ) ) |
| 50 | 49 | 3adant3 | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ( 𝐾 ‘ 𝑛 ) ) |
| 51 | 3 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 52 | 4 51 | mpan2 | ⊢ ( 𝑛 ∈ ω → ( 𝐺 ‘ 𝑛 ) = ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 𝐺 ‘ 𝑛 ) = ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 54 | 53 | eqcomd | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 2nd ‘ ( 𝑓 ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝐺 ‘ 𝑛 ) ) |
| 55 | 26 | 3ad2ant1 | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 𝐾 ‘ 𝑛 ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 56 | ifnefalse | ⊢ ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 57 | 56 | 3ad2ant3 | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 58 | 55 57 | eqtrd | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 𝐾 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 59 | 50 54 58 | 3eltr3d | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ ( 𝐹 ‘ 𝑛 ) ≠ ∅ ) → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 60 | 59 | 3expia | ⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 61 | 60 | expcom | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑛 ∈ ω → ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 62 | 61 | ralrimiv | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 63 | omex | ⊢ ω ∈ V | |
| 64 | fnex | ⊢ ( ( 𝐺 Fn ω ∧ ω ∈ V ) → 𝐺 ∈ V ) | |
| 65 | 5 63 64 | mp2an | ⊢ 𝐺 ∈ V |
| 66 | fneq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 Fn ω ↔ 𝐺 Fn ω ) ) | |
| 67 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 68 | 67 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 69 | 68 | imbi2d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 70 | 69 | ralbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 71 | 66 70 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ↔ ( 𝐺 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 72 | 65 71 | spcev | ⊢ ( ( 𝐺 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝐺 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 73 | 5 62 72 | sylancr | ⊢ ( ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 74 | 8 | a1i | ⊢ ( ( ω ∈ V ∧ 𝑛 ∈ ω ) → ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ∈ V ) |
| 75 | 74 2 | fmptd | ⊢ ( ω ∈ V → 𝐴 : ω ⟶ V ) |
| 76 | 63 75 | ax-mp | ⊢ 𝐴 : ω ⟶ V |
| 77 | sneq | ⊢ ( 𝑛 = 𝑘 → { 𝑛 } = { 𝑘 } ) | |
| 78 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑘 ) ) | |
| 79 | 77 78 | xpeq12d | ⊢ ( 𝑛 = 𝑘 → ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ) |
| 80 | 79 2 8 | fvmpt3i | ⊢ ( 𝑘 ∈ ω → ( 𝐴 ‘ 𝑘 ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ) |
| 81 | 80 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝐴 ‘ 𝑘 ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ) |
| 82 | 81 | eqeq2d | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑛 ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ) ) |
| 83 | 10 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( 𝐴 ‘ 𝑛 ) = ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) |
| 84 | 83 | eqeq1d | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( 𝐴 ‘ 𝑛 ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ↔ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ) ) |
| 85 | xp11 | ⊢ ( ( { 𝑛 } ≠ ∅ ∧ ( 𝐾 ‘ 𝑛 ) ≠ ∅ ) → ( ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ↔ ( { 𝑛 } = { 𝑘 } ∧ ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑘 ) ) ) ) | |
| 86 | 12 28 85 | sylancr | ⊢ ( 𝑛 ∈ ω → ( ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) ↔ ( { 𝑛 } = { 𝑘 } ∧ ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑘 ) ) ) ) |
| 87 | 11 | sneqr | ⊢ ( { 𝑛 } = { 𝑘 } → 𝑛 = 𝑘 ) |
| 88 | 87 | adantr | ⊢ ( ( { 𝑛 } = { 𝑘 } ∧ ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) |
| 89 | 86 88 | biimtrdi | ⊢ ( 𝑛 ∈ ω → ( ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) ) |
| 90 | 89 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) ) |
| 91 | 84 90 | sylbid | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( 𝐴 ‘ 𝑛 ) = ( { 𝑘 } × ( 𝐾 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) ) |
| 92 | 82 91 | sylbid | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑘 ∈ ω ) → ( ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) → 𝑛 = 𝑘 ) ) |
| 93 | 92 | rgen2 | ⊢ ∀ 𝑛 ∈ ω ∀ 𝑘 ∈ ω ( ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) → 𝑛 = 𝑘 ) |
| 94 | dff13 | ⊢ ( 𝐴 : ω –1-1→ V ↔ ( 𝐴 : ω ⟶ V ∧ ∀ 𝑛 ∈ ω ∀ 𝑘 ∈ ω ( ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) → 𝑛 = 𝑘 ) ) ) | |
| 95 | 76 93 94 | mpbir2an | ⊢ 𝐴 : ω –1-1→ V |
| 96 | f1f1orn | ⊢ ( 𝐴 : ω –1-1→ V → 𝐴 : ω –1-1-onto→ ran 𝐴 ) | |
| 97 | 63 | f1oen | ⊢ ( 𝐴 : ω –1-1-onto→ ran 𝐴 → ω ≈ ran 𝐴 ) |
| 98 | ensym | ⊢ ( ω ≈ ran 𝐴 → ran 𝐴 ≈ ω ) | |
| 99 | 96 97 98 | 3syl | ⊢ ( 𝐴 : ω –1-1→ V → ran 𝐴 ≈ ω ) |
| 100 | 2 | rneqi | ⊢ ran 𝐴 = ran ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) |
| 101 | dmmptg | ⊢ ( ∀ 𝑛 ∈ ω ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ∈ V → dom ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) = ω ) | |
| 102 | 8 | a1i | ⊢ ( 𝑛 ∈ ω → ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ∈ V ) |
| 103 | 101 102 | mprg | ⊢ dom ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) = ω |
| 104 | 103 63 | eqeltri | ⊢ dom ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ∈ V |
| 105 | funmpt | ⊢ Fun ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) | |
| 106 | funrnex | ⊢ ( dom ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ∈ V → ( Fun ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) → ran ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ∈ V ) ) | |
| 107 | 104 105 106 | mp2 | ⊢ ran ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( 𝐾 ‘ 𝑛 ) ) ) ∈ V |
| 108 | 100 107 | eqeltri | ⊢ ran 𝐴 ∈ V |
| 109 | breq1 | ⊢ ( 𝑎 = ran 𝐴 → ( 𝑎 ≈ ω ↔ ran 𝐴 ≈ ω ) ) | |
| 110 | raleq | ⊢ ( 𝑎 = ran 𝐴 → ( ∀ 𝑧 ∈ 𝑎 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 111 | 110 | exbidv | ⊢ ( 𝑎 = ran 𝐴 → ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑎 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 112 | 109 111 | imbi12d | ⊢ ( 𝑎 = ran 𝐴 → ( ( 𝑎 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ 𝑎 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ran 𝐴 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
| 113 | ax-cc | ⊢ ( 𝑎 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ 𝑎 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 114 | 108 112 113 | vtocl | ⊢ ( ran 𝐴 ≈ ω → ∃ 𝑓 ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 115 | 95 99 114 | mp2b | ⊢ ∃ 𝑓 ∀ 𝑧 ∈ ran 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
| 116 | 73 115 | exlimiiv | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |