This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axcc2 . (Contributed by Mario Carneiro, 8-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcc2lem.1 | |- K = ( n e. _om |-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
|
| axcc2lem.2 | |- A = ( n e. _om |-> ( { n } X. ( K ` n ) ) ) |
||
| axcc2lem.3 | |- G = ( n e. _om |-> ( 2nd ` ( f ` ( A ` n ) ) ) ) |
||
| Assertion | axcc2lem | |- E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcc2lem.1 | |- K = ( n e. _om |-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
|
| 2 | axcc2lem.2 | |- A = ( n e. _om |-> ( { n } X. ( K ` n ) ) ) |
|
| 3 | axcc2lem.3 | |- G = ( n e. _om |-> ( 2nd ` ( f ` ( A ` n ) ) ) ) |
|
| 4 | fvex | |- ( 2nd ` ( f ` ( A ` n ) ) ) e. _V |
|
| 5 | 4 3 | fnmpti | |- G Fn _om |
| 6 | vsnex | |- { n } e. _V |
|
| 7 | fvex | |- ( K ` n ) e. _V |
|
| 8 | 6 7 | xpex | |- ( { n } X. ( K ` n ) ) e. _V |
| 9 | 2 | fvmpt2 | |- ( ( n e. _om /\ ( { n } X. ( K ` n ) ) e. _V ) -> ( A ` n ) = ( { n } X. ( K ` n ) ) ) |
| 10 | 8 9 | mpan2 | |- ( n e. _om -> ( A ` n ) = ( { n } X. ( K ` n ) ) ) |
| 11 | vex | |- n e. _V |
|
| 12 | 11 | snnz | |- { n } =/= (/) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | snnz | |- { (/) } =/= (/) |
| 15 | iftrue | |- ( ( F ` n ) = (/) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) = { (/) } ) |
|
| 16 | 15 | neeq1d | |- ( ( F ` n ) = (/) -> ( if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) =/= (/) <-> { (/) } =/= (/) ) ) |
| 17 | 14 16 | mpbiri | |- ( ( F ` n ) = (/) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) =/= (/) ) |
| 18 | iffalse | |- ( -. ( F ` n ) = (/) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) = ( F ` n ) ) |
|
| 19 | neqne | |- ( -. ( F ` n ) = (/) -> ( F ` n ) =/= (/) ) |
|
| 20 | 18 19 | eqnetrd | |- ( -. ( F ` n ) = (/) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) =/= (/) ) |
| 21 | 17 20 | pm2.61i | |- if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) =/= (/) |
| 22 | p0ex | |- { (/) } e. _V |
|
| 23 | fvex | |- ( F ` n ) e. _V |
|
| 24 | 22 23 | ifex | |- if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) e. _V |
| 25 | 1 | fvmpt2 | |- ( ( n e. _om /\ if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) e. _V ) -> ( K ` n ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 26 | 24 25 | mpan2 | |- ( n e. _om -> ( K ` n ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 27 | 26 | neeq1d | |- ( n e. _om -> ( ( K ` n ) =/= (/) <-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) =/= (/) ) ) |
| 28 | 21 27 | mpbiri | |- ( n e. _om -> ( K ` n ) =/= (/) ) |
| 29 | xpnz | |- ( ( { n } =/= (/) /\ ( K ` n ) =/= (/) ) <-> ( { n } X. ( K ` n ) ) =/= (/) ) |
|
| 30 | 29 | biimpi | |- ( ( { n } =/= (/) /\ ( K ` n ) =/= (/) ) -> ( { n } X. ( K ` n ) ) =/= (/) ) |
| 31 | 12 28 30 | sylancr | |- ( n e. _om -> ( { n } X. ( K ` n ) ) =/= (/) ) |
| 32 | 10 31 | eqnetrd | |- ( n e. _om -> ( A ` n ) =/= (/) ) |
| 33 | 8 2 | fnmpti | |- A Fn _om |
| 34 | fnfvelrn | |- ( ( A Fn _om /\ n e. _om ) -> ( A ` n ) e. ran A ) |
|
| 35 | 33 34 | mpan | |- ( n e. _om -> ( A ` n ) e. ran A ) |
| 36 | neeq1 | |- ( z = ( A ` n ) -> ( z =/= (/) <-> ( A ` n ) =/= (/) ) ) |
|
| 37 | fveq2 | |- ( z = ( A ` n ) -> ( f ` z ) = ( f ` ( A ` n ) ) ) |
|
| 38 | id | |- ( z = ( A ` n ) -> z = ( A ` n ) ) |
|
| 39 | 37 38 | eleq12d | |- ( z = ( A ` n ) -> ( ( f ` z ) e. z <-> ( f ` ( A ` n ) ) e. ( A ` n ) ) ) |
| 40 | 36 39 | imbi12d | |- ( z = ( A ` n ) -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( ( A ` n ) =/= (/) -> ( f ` ( A ` n ) ) e. ( A ` n ) ) ) ) |
| 41 | 40 | rspccv | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> ( ( A ` n ) e. ran A -> ( ( A ` n ) =/= (/) -> ( f ` ( A ` n ) ) e. ( A ` n ) ) ) ) |
| 42 | 35 41 | syl5 | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> ( n e. _om -> ( ( A ` n ) =/= (/) -> ( f ` ( A ` n ) ) e. ( A ` n ) ) ) ) |
| 43 | 32 42 | mpdi | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> ( n e. _om -> ( f ` ( A ` n ) ) e. ( A ` n ) ) ) |
| 44 | 43 | impcom | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( f ` ( A ` n ) ) e. ( A ` n ) ) |
| 45 | 10 | eleq2d | |- ( n e. _om -> ( ( f ` ( A ` n ) ) e. ( A ` n ) <-> ( f ` ( A ` n ) ) e. ( { n } X. ( K ` n ) ) ) ) |
| 46 | 45 | adantr | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( ( f ` ( A ` n ) ) e. ( A ` n ) <-> ( f ` ( A ` n ) ) e. ( { n } X. ( K ` n ) ) ) ) |
| 47 | 44 46 | mpbid | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( f ` ( A ` n ) ) e. ( { n } X. ( K ` n ) ) ) |
| 48 | xp2nd | |- ( ( f ` ( A ` n ) ) e. ( { n } X. ( K ` n ) ) -> ( 2nd ` ( f ` ( A ` n ) ) ) e. ( K ` n ) ) |
|
| 49 | 47 48 | syl | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( 2nd ` ( f ` ( A ` n ) ) ) e. ( K ` n ) ) |
| 50 | 49 | 3adant3 | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( 2nd ` ( f ` ( A ` n ) ) ) e. ( K ` n ) ) |
| 51 | 3 | fvmpt2 | |- ( ( n e. _om /\ ( 2nd ` ( f ` ( A ` n ) ) ) e. _V ) -> ( G ` n ) = ( 2nd ` ( f ` ( A ` n ) ) ) ) |
| 52 | 4 51 | mpan2 | |- ( n e. _om -> ( G ` n ) = ( 2nd ` ( f ` ( A ` n ) ) ) ) |
| 53 | 52 | 3ad2ant1 | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( G ` n ) = ( 2nd ` ( f ` ( A ` n ) ) ) ) |
| 54 | 53 | eqcomd | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( 2nd ` ( f ` ( A ` n ) ) ) = ( G ` n ) ) |
| 55 | 26 | 3ad2ant1 | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( K ` n ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) |
| 56 | ifnefalse | |- ( ( F ` n ) =/= (/) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) = ( F ` n ) ) |
|
| 57 | 56 | 3ad2ant3 | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) = ( F ` n ) ) |
| 58 | 55 57 | eqtrd | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( K ` n ) = ( F ` n ) ) |
| 59 | 50 54 58 | 3eltr3d | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) /\ ( F ` n ) =/= (/) ) -> ( G ` n ) e. ( F ` n ) ) |
| 60 | 59 | 3expia | |- ( ( n e. _om /\ A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) |
| 61 | 60 | expcom | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> ( n e. _om -> ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) ) |
| 62 | 61 | ralrimiv | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> A. n e. _om ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) |
| 63 | omex | |- _om e. _V |
|
| 64 | fnex | |- ( ( G Fn _om /\ _om e. _V ) -> G e. _V ) |
|
| 65 | 5 63 64 | mp2an | |- G e. _V |
| 66 | fneq1 | |- ( g = G -> ( g Fn _om <-> G Fn _om ) ) |
|
| 67 | fveq1 | |- ( g = G -> ( g ` n ) = ( G ` n ) ) |
|
| 68 | 67 | eleq1d | |- ( g = G -> ( ( g ` n ) e. ( F ` n ) <-> ( G ` n ) e. ( F ` n ) ) ) |
| 69 | 68 | imbi2d | |- ( g = G -> ( ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) <-> ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) ) |
| 70 | 69 | ralbidv | |- ( g = G -> ( A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) <-> A. n e. _om ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) ) |
| 71 | 66 70 | anbi12d | |- ( g = G -> ( ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) <-> ( G Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) ) ) |
| 72 | 65 71 | spcev | |- ( ( G Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( G ` n ) e. ( F ` n ) ) ) -> E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) ) |
| 73 | 5 62 72 | sylancr | |- ( A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) ) |
| 74 | 8 | a1i | |- ( ( _om e. _V /\ n e. _om ) -> ( { n } X. ( K ` n ) ) e. _V ) |
| 75 | 74 2 | fmptd | |- ( _om e. _V -> A : _om --> _V ) |
| 76 | 63 75 | ax-mp | |- A : _om --> _V |
| 77 | sneq | |- ( n = k -> { n } = { k } ) |
|
| 78 | fveq2 | |- ( n = k -> ( K ` n ) = ( K ` k ) ) |
|
| 79 | 77 78 | xpeq12d | |- ( n = k -> ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) ) |
| 80 | 79 2 8 | fvmpt3i | |- ( k e. _om -> ( A ` k ) = ( { k } X. ( K ` k ) ) ) |
| 81 | 80 | adantl | |- ( ( n e. _om /\ k e. _om ) -> ( A ` k ) = ( { k } X. ( K ` k ) ) ) |
| 82 | 81 | eqeq2d | |- ( ( n e. _om /\ k e. _om ) -> ( ( A ` n ) = ( A ` k ) <-> ( A ` n ) = ( { k } X. ( K ` k ) ) ) ) |
| 83 | 10 | adantr | |- ( ( n e. _om /\ k e. _om ) -> ( A ` n ) = ( { n } X. ( K ` n ) ) ) |
| 84 | 83 | eqeq1d | |- ( ( n e. _om /\ k e. _om ) -> ( ( A ` n ) = ( { k } X. ( K ` k ) ) <-> ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) ) ) |
| 85 | xp11 | |- ( ( { n } =/= (/) /\ ( K ` n ) =/= (/) ) -> ( ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) <-> ( { n } = { k } /\ ( K ` n ) = ( K ` k ) ) ) ) |
|
| 86 | 12 28 85 | sylancr | |- ( n e. _om -> ( ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) <-> ( { n } = { k } /\ ( K ` n ) = ( K ` k ) ) ) ) |
| 87 | 11 | sneqr | |- ( { n } = { k } -> n = k ) |
| 88 | 87 | adantr | |- ( ( { n } = { k } /\ ( K ` n ) = ( K ` k ) ) -> n = k ) |
| 89 | 86 88 | biimtrdi | |- ( n e. _om -> ( ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) -> n = k ) ) |
| 90 | 89 | adantr | |- ( ( n e. _om /\ k e. _om ) -> ( ( { n } X. ( K ` n ) ) = ( { k } X. ( K ` k ) ) -> n = k ) ) |
| 91 | 84 90 | sylbid | |- ( ( n e. _om /\ k e. _om ) -> ( ( A ` n ) = ( { k } X. ( K ` k ) ) -> n = k ) ) |
| 92 | 82 91 | sylbid | |- ( ( n e. _om /\ k e. _om ) -> ( ( A ` n ) = ( A ` k ) -> n = k ) ) |
| 93 | 92 | rgen2 | |- A. n e. _om A. k e. _om ( ( A ` n ) = ( A ` k ) -> n = k ) |
| 94 | dff13 | |- ( A : _om -1-1-> _V <-> ( A : _om --> _V /\ A. n e. _om A. k e. _om ( ( A ` n ) = ( A ` k ) -> n = k ) ) ) |
|
| 95 | 76 93 94 | mpbir2an | |- A : _om -1-1-> _V |
| 96 | f1f1orn | |- ( A : _om -1-1-> _V -> A : _om -1-1-onto-> ran A ) |
|
| 97 | 63 | f1oen | |- ( A : _om -1-1-onto-> ran A -> _om ~~ ran A ) |
| 98 | ensym | |- ( _om ~~ ran A -> ran A ~~ _om ) |
|
| 99 | 96 97 98 | 3syl | |- ( A : _om -1-1-> _V -> ran A ~~ _om ) |
| 100 | 2 | rneqi | |- ran A = ran ( n e. _om |-> ( { n } X. ( K ` n ) ) ) |
| 101 | dmmptg | |- ( A. n e. _om ( { n } X. ( K ` n ) ) e. _V -> dom ( n e. _om |-> ( { n } X. ( K ` n ) ) ) = _om ) |
|
| 102 | 8 | a1i | |- ( n e. _om -> ( { n } X. ( K ` n ) ) e. _V ) |
| 103 | 101 102 | mprg | |- dom ( n e. _om |-> ( { n } X. ( K ` n ) ) ) = _om |
| 104 | 103 63 | eqeltri | |- dom ( n e. _om |-> ( { n } X. ( K ` n ) ) ) e. _V |
| 105 | funmpt | |- Fun ( n e. _om |-> ( { n } X. ( K ` n ) ) ) |
|
| 106 | funrnex | |- ( dom ( n e. _om |-> ( { n } X. ( K ` n ) ) ) e. _V -> ( Fun ( n e. _om |-> ( { n } X. ( K ` n ) ) ) -> ran ( n e. _om |-> ( { n } X. ( K ` n ) ) ) e. _V ) ) |
|
| 107 | 104 105 106 | mp2 | |- ran ( n e. _om |-> ( { n } X. ( K ` n ) ) ) e. _V |
| 108 | 100 107 | eqeltri | |- ran A e. _V |
| 109 | breq1 | |- ( a = ran A -> ( a ~~ _om <-> ran A ~~ _om ) ) |
|
| 110 | raleq | |- ( a = ran A -> ( A. z e. a ( z =/= (/) -> ( f ` z ) e. z ) <-> A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
|
| 111 | 110 | exbidv | |- ( a = ran A -> ( E. f A. z e. a ( z =/= (/) -> ( f ` z ) e. z ) <-> E. f A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 112 | 109 111 | imbi12d | |- ( a = ran A -> ( ( a ~~ _om -> E. f A. z e. a ( z =/= (/) -> ( f ` z ) e. z ) ) <-> ( ran A ~~ _om -> E. f A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) ) ) |
| 113 | ax-cc | |- ( a ~~ _om -> E. f A. z e. a ( z =/= (/) -> ( f ` z ) e. z ) ) |
|
| 114 | 108 112 113 | vtocl | |- ( ran A ~~ _om -> E. f A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 115 | 95 99 114 | mp2b | |- E. f A. z e. ran A ( z =/= (/) -> ( f ` z ) e. z ) |
| 116 | 73 115 | exlimiiv | |- E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |