This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub and others. (Contributed by Jeff Hankins, 25-Jan-2010) (Proof shortened by Mario Carneiro, 11-Feb-2015) (Revised by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finsschain | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ⊆ ∪ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ ∪ 𝐴 ↔ ∅ ⊆ ∪ 𝐴 ) ) | |
| 2 | sseq1 | ⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝑧 ↔ ∅ ⊆ 𝑧 ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝑎 = ∅ → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑎 = ∅ → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) ) ) |
| 6 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ ∪ 𝐴 ↔ 𝑏 ⊆ ∪ 𝐴 ) ) | |
| 7 | sseq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝑧 ↔ 𝑏 ⊆ 𝑧 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) ) ) |
| 11 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ ∪ 𝐴 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ) | |
| 12 | sseq1 | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝑧 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) ) |
| 16 | sseq1 | ⊢ ( 𝑎 = 𝐵 → ( 𝑎 ⊆ ∪ 𝐴 ↔ 𝐵 ⊆ ∪ 𝐴 ) ) | |
| 17 | sseq1 | ⊢ ( 𝑎 = 𝐵 → ( 𝑎 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑧 ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑎 = 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑎 = 𝐵 → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑎 = 𝐵 → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) ) |
| 21 | 0ss | ⊢ ∅ ⊆ 𝑧 | |
| 22 | 21 | rgenw | ⊢ ∀ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 |
| 23 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) | |
| 24 | 22 23 | mpan2 | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) |
| 26 | 25 | a1d | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) |
| 27 | id | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) | |
| 28 | 27 | unssad | ⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → 𝑏 ⊆ ∪ 𝐴 ) |
| 29 | 28 | imim1i | ⊢ ( ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) |
| 30 | sseq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑏 ⊆ 𝑧 ↔ 𝑏 ⊆ 𝑤 ) ) | |
| 31 | 30 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ↔ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) |
| 32 | simpr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) | |
| 33 | 32 | unssbd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → { 𝑐 } ⊆ ∪ 𝐴 ) |
| 34 | vex | ⊢ 𝑐 ∈ V | |
| 35 | 34 | snss | ⊢ ( 𝑐 ∈ ∪ 𝐴 ↔ { 𝑐 } ⊆ ∪ 𝐴 ) |
| 36 | 33 35 | sylibr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → 𝑐 ∈ ∪ 𝐴 ) |
| 37 | eluni2 | ⊢ ( 𝑐 ∈ ∪ 𝐴 ↔ ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ) | |
| 38 | 36 37 | sylib | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ) |
| 39 | reeanv | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) ) | |
| 40 | simpllr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → [⊊] Or 𝐴 ) | |
| 41 | simprlr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑤 ∈ 𝐴 ) | |
| 42 | simprll | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑢 ∈ 𝐴 ) | |
| 43 | sorpssun | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ) | |
| 44 | 40 41 42 43 | syl12anc | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ) |
| 45 | simprrr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑏 ⊆ 𝑤 ) | |
| 46 | simprrl | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑐 ∈ 𝑢 ) | |
| 47 | 46 | snssd | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → { 𝑐 } ⊆ 𝑢 ) |
| 48 | unss12 | ⊢ ( ( 𝑏 ⊆ 𝑤 ∧ { 𝑐 } ⊆ 𝑢 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) | |
| 49 | 45 47 48 | syl2anc | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) |
| 50 | sseq2 | ⊢ ( 𝑧 = ( 𝑤 ∪ 𝑢 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) ) | |
| 51 | 50 | rspcev | ⊢ ( ( ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) |
| 52 | 44 49 51 | syl2anc | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) |
| 53 | 52 | expr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 54 | 53 | rexlimdvva | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 55 | 39 54 | biimtrrid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ( ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 56 | 38 55 | mpand | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 57 | 31 56 | biimtrid | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 58 | 57 | ex | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 59 | 58 | a2d | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 60 | 29 59 | syl5 | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 61 | 60 | a2i | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 62 | 61 | a1i | ⊢ ( 𝑏 ∈ Fin → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) ) |
| 63 | 5 10 15 20 26 62 | findcard2 | ⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 64 | 63 | com12 | ⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ∈ Fin → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 65 | 64 | imp32 | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ⊆ ∪ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) |