This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if ( alephA ) < A , then ( alephA ) is singular. Conversely, if ( alephA ) is regular (i.e. weakly inaccessible), then ( alephA ) = A , so A has to be rather large (see alephfp ). Proposition 11.13 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsing | ⊢ ( Lim 𝐴 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | ⊢ ℵ Fn On | |
| 2 | fnfun | ⊢ ( ℵ Fn On → Fun ℵ ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun ℵ |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ V ) | |
| 5 | resfunexg | ⊢ ( ( Fun ℵ ∧ 𝐴 ∈ V ) → ( ℵ ↾ 𝐴 ) ∈ V ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) ∈ V ) |
| 7 | limelon | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 8 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ⊆ On ) |
| 10 | fnssres | ⊢ ( ( ℵ Fn On ∧ 𝐴 ⊆ On ) → ( ℵ ↾ 𝐴 ) Fn 𝐴 ) | |
| 11 | 1 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) Fn 𝐴 ) |
| 12 | fvres | ⊢ ( 𝑦 ∈ 𝐴 → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) |
| 14 | alephord2i | ⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 15 | 14 | imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 16 | 13 15 | eqeltrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 17 | 7 16 | sylan | ⊢ ( ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 18 | 17 | ralrimiva | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 19 | fnfvrnss | ⊢ ( ( ( ℵ ↾ 𝐴 ) Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ∈ ( ℵ ‘ 𝐴 ) ) → ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) |
| 21 | df-f | ⊢ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ↔ ( ( ℵ ↾ 𝐴 ) Fn 𝐴 ∧ ran ( ℵ ↾ 𝐴 ) ⊆ ( ℵ ‘ 𝐴 ) ) ) | |
| 22 | 11 20 21 | sylanbrc | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ) |
| 23 | alephsmo | ⊢ Smo ℵ | |
| 24 | 1 | fndmi | ⊢ dom ℵ = On |
| 25 | 7 24 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ dom ℵ ) |
| 26 | smores | ⊢ ( ( Smo ℵ ∧ 𝐴 ∈ dom ℵ ) → Smo ( ℵ ↾ 𝐴 ) ) | |
| 27 | 23 25 26 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → Smo ( ℵ ↾ 𝐴 ) ) |
| 28 | alephlim | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) | |
| 29 | 28 | eleq2d | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝑥 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ) ) |
| 30 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( ℵ ‘ 𝑦 ) ) | |
| 31 | alephon | ⊢ ( ℵ ‘ 𝑦 ) ∈ On | |
| 32 | 31 | onelssi | ⊢ ( 𝑥 ∈ ( ℵ ‘ 𝑦 ) → 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 33 | 32 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( ℵ ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 34 | 30 33 | sylbi | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 35 | 29 34 | biimtrdi | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝑥 ∈ ( ℵ ‘ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 36 | 35 | ralrimiv | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 37 | feq1 | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ↔ ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ) ) | |
| 38 | smoeq | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( Smo 𝑓 ↔ Smo ( ℵ ↾ 𝐴 ) ) ) | |
| 39 | fveq1 | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) = ( ( ℵ ↾ 𝐴 ) ‘ 𝑦 ) ) | |
| 40 | 39 12 | sylan9eq | ⊢ ( ( 𝑓 = ( ℵ ↾ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) = ( ℵ ‘ 𝑦 ) ) |
| 41 | 40 | sseq2d | ⊢ ( ( 𝑓 = ( ℵ ↾ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 42 | 41 | rexbidva | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 44 | 37 38 43 | 3anbi123d | ⊢ ( 𝑓 = ( ℵ ↾ 𝐴 ) → ( ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) ) |
| 45 | 44 | spcegv | ⊢ ( ( ℵ ↾ 𝐴 ) ∈ V → ( ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 46 | 45 | imp | ⊢ ( ( ( ℵ ↾ 𝐴 ) ∈ V ∧ ( ( ℵ ↾ 𝐴 ) : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo ( ℵ ↾ 𝐴 ) ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( ℵ ‘ 𝑦 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 47 | 6 22 27 36 46 | syl13anc | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
| 48 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 49 | cfcof | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ 𝐴 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) | |
| 50 | 48 7 49 | sylancr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ( ℵ ‘ 𝐴 ) ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ ( ℵ ‘ 𝐴 ) ∃ 𝑦 ∈ 𝐴 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) |
| 51 | 47 50 | mpd | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
| 52 | 51 | expcom | ⊢ ( Lim 𝐴 → ( 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) ) |
| 53 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 54 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 55 | 54 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
| 56 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ 𝐴 ) = ∅ ) | |
| 57 | 53 55 56 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
| 58 | 52 57 | pm2.61d1 | ⊢ ( Lim 𝐴 → ( cf ‘ ( ℵ ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |