This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smores | ⊢ ( ( Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴 ) → Smo ( 𝐴 ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | ⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐵 ) ) | |
| 2 | funfn | ⊢ ( Fun 𝐴 ↔ 𝐴 Fn dom 𝐴 ) | |
| 3 | funfn | ⊢ ( Fun ( 𝐴 ↾ 𝐵 ) ↔ ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ) | |
| 4 | 1 2 3 | 3imtr3i | ⊢ ( 𝐴 Fn dom 𝐴 → ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ) |
| 5 | resss | ⊢ ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 | |
| 6 | 5 | rnssi | ⊢ ran ( 𝐴 ↾ 𝐵 ) ⊆ ran 𝐴 |
| 7 | sstr | ⊢ ( ( ran ( 𝐴 ↾ 𝐵 ) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On ) → ran ( 𝐴 ↾ 𝐵 ) ⊆ On ) | |
| 8 | 6 7 | mpan | ⊢ ( ran 𝐴 ⊆ On → ran ( 𝐴 ↾ 𝐵 ) ⊆ On ) |
| 9 | 4 8 | anim12i | ⊢ ( ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On ) → ( ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ∧ ran ( 𝐴 ↾ 𝐵 ) ⊆ On ) ) |
| 10 | df-f | ⊢ ( 𝐴 : dom 𝐴 ⟶ On ↔ ( 𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On ) ) | |
| 11 | df-f | ⊢ ( ( 𝐴 ↾ 𝐵 ) : dom ( 𝐴 ↾ 𝐵 ) ⟶ On ↔ ( ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ∧ ran ( 𝐴 ↾ 𝐵 ) ⊆ On ) ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( 𝐴 : dom 𝐴 ⟶ On → ( 𝐴 ↾ 𝐵 ) : dom ( 𝐴 ↾ 𝐵 ) ⟶ On ) |
| 13 | 12 | a1i | ⊢ ( 𝐵 ∈ dom 𝐴 → ( 𝐴 : dom 𝐴 ⟶ On → ( 𝐴 ↾ 𝐵 ) : dom ( 𝐴 ↾ 𝐵 ) ⟶ On ) ) |
| 14 | ordelord | ⊢ ( ( Ord dom 𝐴 ∧ 𝐵 ∈ dom 𝐴 ) → Ord 𝐵 ) | |
| 15 | 14 | expcom | ⊢ ( 𝐵 ∈ dom 𝐴 → ( Ord dom 𝐴 → Ord 𝐵 ) ) |
| 16 | ordin | ⊢ ( ( Ord 𝐵 ∧ Ord dom 𝐴 ) → Ord ( 𝐵 ∩ dom 𝐴 ) ) | |
| 17 | 16 | ex | ⊢ ( Ord 𝐵 → ( Ord dom 𝐴 → Ord ( 𝐵 ∩ dom 𝐴 ) ) ) |
| 18 | 15 17 | syli | ⊢ ( 𝐵 ∈ dom 𝐴 → ( Ord dom 𝐴 → Ord ( 𝐵 ∩ dom 𝐴 ) ) ) |
| 19 | dmres | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) | |
| 20 | ordeq | ⊢ ( dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) → ( Ord dom ( 𝐴 ↾ 𝐵 ) ↔ Ord ( 𝐵 ∩ dom 𝐴 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( Ord dom ( 𝐴 ↾ 𝐵 ) ↔ Ord ( 𝐵 ∩ dom 𝐴 ) ) |
| 22 | 18 21 | imbitrrdi | ⊢ ( 𝐵 ∈ dom 𝐴 → ( Ord dom 𝐴 → Ord dom ( 𝐴 ↾ 𝐵 ) ) ) |
| 23 | dmss | ⊢ ( ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 → dom ( 𝐴 ↾ 𝐵 ) ⊆ dom 𝐴 ) | |
| 24 | 5 23 | ax-mp | ⊢ dom ( 𝐴 ↾ 𝐵 ) ⊆ dom 𝐴 |
| 25 | ssralv | ⊢ ( dom ( 𝐴 ↾ 𝐵 ) ⊆ dom 𝐴 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) | |
| 26 | 24 25 | ax-mp | ⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 27 | ssralv | ⊢ ( dom ( 𝐴 ↾ 𝐵 ) ⊆ dom 𝐴 → ( ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) | |
| 28 | 24 27 | ax-mp | ⊢ ( ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 29 | 28 | ralimi | ⊢ ( ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 30 | 26 29 | syl | ⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 31 | inss1 | ⊢ ( 𝐵 ∩ dom 𝐴 ) ⊆ 𝐵 | |
| 32 | 19 31 | eqsstri | ⊢ dom ( 𝐴 ↾ 𝐵 ) ⊆ 𝐵 |
| 33 | simpl | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ) | |
| 34 | 32 33 | sselid | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 35 | 34 | fvresd | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 36 | simpr | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) | |
| 37 | 32 36 | sselid | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 38 | 37 | fvresd | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) = ( 𝐴 ‘ 𝑦 ) ) |
| 39 | 35 38 | eleq12d | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → ( ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ↔ ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 40 | 39 | imbi2d | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∧ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ) → ( ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |
| 41 | 40 | ralbidva | ⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) → ( ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |
| 42 | 41 | ralbiia | ⊢ ( ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
| 43 | 30 42 | sylibr | ⊢ ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ) |
| 44 | 43 | a1i | ⊢ ( 𝐵 ∈ dom 𝐴 → ( ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ) ) |
| 45 | 13 22 44 | 3anim123d | ⊢ ( 𝐵 ∈ dom 𝐴 → ( ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) → ( ( 𝐴 ↾ 𝐵 ) : dom ( 𝐴 ↾ 𝐵 ) ⟶ On ∧ Ord dom ( 𝐴 ↾ 𝐵 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ) ) ) |
| 46 | df-smo | ⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) | |
| 47 | df-smo | ⊢ ( Smo ( 𝐴 ↾ 𝐵 ) ↔ ( ( 𝐴 ↾ 𝐵 ) : dom ( 𝐴 ↾ 𝐵 ) ⟶ On ∧ Ord dom ( 𝐴 ↾ 𝐵 ) ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ∀ 𝑦 ∈ dom ( 𝐴 ↾ 𝐵 ) ( 𝑥 ∈ 𝑦 → ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑦 ) ) ) ) | |
| 48 | 45 46 47 | 3imtr4g | ⊢ ( 𝐵 ∈ dom 𝐴 → ( Smo 𝐴 → Smo ( 𝐴 ↾ 𝐵 ) ) ) |
| 49 | 48 | impcom | ⊢ ( ( Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴 ) → Smo ( 𝐴 ↾ 𝐵 ) ) |