This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a cofinal map from A to B , then they have the same cofinality. This was used as Definition 11.1 of TakeutiZaring p. 100, who defines an equivalence relation cof ( A , B ) and defines our cf ( B ) as the minimum B such that cof ( A , B ) . (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfcof | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfcoflem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) | |
| 2 | 1 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) |
| 3 | cff1 | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) | |
| 4 | f1f | ⊢ ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 → 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ) | |
| 5 | 4 | anim1i | ⊢ ( ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
| 6 | 5 | eximi | ⊢ ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) –1-1→ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) ) |
| 8 | eqid | ⊢ ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ ∩ { 𝑣 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ 𝑣 ) } ) = ( 𝑦 ∈ ( cf ‘ 𝐴 ) ↦ ∩ { 𝑣 ∈ 𝐵 ∣ ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ 𝑣 ) } ) | |
| 9 | 8 | coftr | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ ∀ 𝑠 ∈ 𝐴 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑠 ⊆ ( 𝑔 ‘ 𝑡 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) ) ) |
| 10 | 7 9 | syl5com | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) ) ) |
| 11 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 12 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
| 13 | eqid | ⊢ { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } | |
| 14 | eqid | ⊢ ∩ { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( ℎ ‘ 𝑐 ) } = ∩ { 𝑐 ∈ ( cf ‘ 𝐴 ) ∣ 𝑟 ⊆ ( ℎ ‘ 𝑐 ) } | |
| 15 | eqid | ⊢ OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } ) = OrdIso ( E , { 𝑥 ∈ ( cf ‘ 𝐴 ) ∣ ∀ 𝑡 ∈ 𝑥 ( ℎ ‘ 𝑡 ) ∈ ( ℎ ‘ 𝑥 ) } ) | |
| 16 | 13 14 15 | cofsmo | ⊢ ( ( Ord 𝐵 ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) ) |
| 17 | 11 12 16 | sylancl | ⊢ ( 𝐵 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) ) |
| 18 | 12 | onsuci | ⊢ suc ( cf ‘ 𝐴 ) ∈ On |
| 19 | 18 | oneli | ⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ∈ On ) |
| 20 | cfflb | ⊢ ( ( 𝐵 ∈ On ∧ 𝑐 ∈ On ) → ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) ) | |
| 21 | 19 20 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) → ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) ) |
| 22 | 3simpb | ⊢ ( ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) | |
| 23 | 22 | eximi | ⊢ ( ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) |
| 24 | 21 23 | impel | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ 𝑐 ) |
| 25 | onsssuc | ⊢ ( ( 𝑐 ∈ On ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ) | |
| 26 | 19 12 25 | sylancl | ⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → ( 𝑐 ⊆ ( cf ‘ 𝐴 ) ↔ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ) |
| 27 | 26 | ibir | ⊢ ( 𝑐 ∈ suc ( cf ‘ 𝐴 ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) ) |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → 𝑐 ⊆ ( cf ‘ 𝐴 ) ) |
| 29 | 24 28 | sstrd | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ) ∧ ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) |
| 30 | 29 | rexlimdva2 | ⊢ ( 𝐵 ∈ On → ( ∃ 𝑐 ∈ suc ( cf ‘ 𝐴 ) ∃ 𝑘 ( 𝑘 : 𝑐 ⟶ 𝐵 ∧ Smo 𝑘 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑠 ∈ 𝑐 𝑟 ⊆ ( 𝑘 ‘ 𝑠 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
| 31 | 17 30 | syld | ⊢ ( 𝐵 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐴 ) ⟶ 𝐵 ∧ ∀ 𝑟 ∈ 𝐵 ∃ 𝑡 ∈ ( cf ‘ 𝐴 ) 𝑟 ⊆ ( ℎ ‘ 𝑡 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
| 32 | 10 31 | sylan9 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐵 ) ⊆ ( cf ‘ 𝐴 ) ) |
| 34 | 2 33 | eqssd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑧 ⊆ ( 𝑓 ‘ 𝑤 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝐵 ) ) ) |