This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if ( alephA ) < A , then ( alephA ) is singular. Conversely, if ( alephA ) is regular (i.e. weakly inaccessible), then ( alephA ) = A , so A has to be rather large (see alephfp ). Proposition 11.13 of TakeutiZaring p. 103. (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsing | |- ( Lim A -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | |- aleph Fn On |
|
| 2 | fnfun | |- ( aleph Fn On -> Fun aleph ) |
|
| 3 | 1 2 | ax-mp | |- Fun aleph |
| 4 | simpl | |- ( ( A e. _V /\ Lim A ) -> A e. _V ) |
|
| 5 | resfunexg | |- ( ( Fun aleph /\ A e. _V ) -> ( aleph |` A ) e. _V ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) e. _V ) |
| 7 | limelon | |- ( ( A e. _V /\ Lim A ) -> A e. On ) |
|
| 8 | onss | |- ( A e. On -> A C_ On ) |
|
| 9 | 7 8 | syl | |- ( ( A e. _V /\ Lim A ) -> A C_ On ) |
| 10 | fnssres | |- ( ( aleph Fn On /\ A C_ On ) -> ( aleph |` A ) Fn A ) |
|
| 11 | 1 9 10 | sylancr | |- ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) Fn A ) |
| 12 | fvres | |- ( y e. A -> ( ( aleph |` A ) ` y ) = ( aleph ` y ) ) |
|
| 13 | 12 | adantl | |- ( ( A e. On /\ y e. A ) -> ( ( aleph |` A ) ` y ) = ( aleph ` y ) ) |
| 14 | alephord2i | |- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
|
| 15 | 14 | imp | |- ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) |
| 16 | 13 15 | eqeltrd | |- ( ( A e. On /\ y e. A ) -> ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) |
| 17 | 7 16 | sylan | |- ( ( ( A e. _V /\ Lim A ) /\ y e. A ) -> ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) |
| 18 | 17 | ralrimiva | |- ( ( A e. _V /\ Lim A ) -> A. y e. A ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) |
| 19 | fnfvrnss | |- ( ( ( aleph |` A ) Fn A /\ A. y e. A ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) -> ran ( aleph |` A ) C_ ( aleph ` A ) ) |
|
| 20 | 11 18 19 | syl2anc | |- ( ( A e. _V /\ Lim A ) -> ran ( aleph |` A ) C_ ( aleph ` A ) ) |
| 21 | df-f | |- ( ( aleph |` A ) : A --> ( aleph ` A ) <-> ( ( aleph |` A ) Fn A /\ ran ( aleph |` A ) C_ ( aleph ` A ) ) ) |
|
| 22 | 11 20 21 | sylanbrc | |- ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) : A --> ( aleph ` A ) ) |
| 23 | alephsmo | |- Smo aleph |
|
| 24 | 1 | fndmi | |- dom aleph = On |
| 25 | 7 24 | eleqtrrdi | |- ( ( A e. _V /\ Lim A ) -> A e. dom aleph ) |
| 26 | smores | |- ( ( Smo aleph /\ A e. dom aleph ) -> Smo ( aleph |` A ) ) |
|
| 27 | 23 25 26 | sylancr | |- ( ( A e. _V /\ Lim A ) -> Smo ( aleph |` A ) ) |
| 28 | alephlim | |- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) |
|
| 29 | 28 | eleq2d | |- ( ( A e. _V /\ Lim A ) -> ( x e. ( aleph ` A ) <-> x e. U_ y e. A ( aleph ` y ) ) ) |
| 30 | eliun | |- ( x e. U_ y e. A ( aleph ` y ) <-> E. y e. A x e. ( aleph ` y ) ) |
|
| 31 | alephon | |- ( aleph ` y ) e. On |
|
| 32 | 31 | onelssi | |- ( x e. ( aleph ` y ) -> x C_ ( aleph ` y ) ) |
| 33 | 32 | reximi | |- ( E. y e. A x e. ( aleph ` y ) -> E. y e. A x C_ ( aleph ` y ) ) |
| 34 | 30 33 | sylbi | |- ( x e. U_ y e. A ( aleph ` y ) -> E. y e. A x C_ ( aleph ` y ) ) |
| 35 | 29 34 | biimtrdi | |- ( ( A e. _V /\ Lim A ) -> ( x e. ( aleph ` A ) -> E. y e. A x C_ ( aleph ` y ) ) ) |
| 36 | 35 | ralrimiv | |- ( ( A e. _V /\ Lim A ) -> A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) |
| 37 | feq1 | |- ( f = ( aleph |` A ) -> ( f : A --> ( aleph ` A ) <-> ( aleph |` A ) : A --> ( aleph ` A ) ) ) |
|
| 38 | smoeq | |- ( f = ( aleph |` A ) -> ( Smo f <-> Smo ( aleph |` A ) ) ) |
|
| 39 | fveq1 | |- ( f = ( aleph |` A ) -> ( f ` y ) = ( ( aleph |` A ) ` y ) ) |
|
| 40 | 39 12 | sylan9eq | |- ( ( f = ( aleph |` A ) /\ y e. A ) -> ( f ` y ) = ( aleph ` y ) ) |
| 41 | 40 | sseq2d | |- ( ( f = ( aleph |` A ) /\ y e. A ) -> ( x C_ ( f ` y ) <-> x C_ ( aleph ` y ) ) ) |
| 42 | 41 | rexbidva | |- ( f = ( aleph |` A ) -> ( E. y e. A x C_ ( f ` y ) <-> E. y e. A x C_ ( aleph ` y ) ) ) |
| 43 | 42 | ralbidv | |- ( f = ( aleph |` A ) -> ( A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) <-> A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) |
| 44 | 37 38 43 | 3anbi123d | |- ( f = ( aleph |` A ) -> ( ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) <-> ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) ) |
| 45 | 44 | spcegv | |- ( ( aleph |` A ) e. _V -> ( ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) ) |
| 46 | 45 | imp | |- ( ( ( aleph |` A ) e. _V /\ ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) |
| 47 | 6 22 27 36 46 | syl13anc | |- ( ( A e. _V /\ Lim A ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) |
| 48 | alephon | |- ( aleph ` A ) e. On |
|
| 49 | cfcof | |- ( ( ( aleph ` A ) e. On /\ A e. On ) -> ( E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) |
|
| 50 | 48 7 49 | sylancr | |- ( ( A e. _V /\ Lim A ) -> ( E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) |
| 51 | 47 50 | mpd | |- ( ( A e. _V /\ Lim A ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) |
| 52 | 51 | expcom | |- ( Lim A -> ( A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) |
| 53 | cf0 | |- ( cf ` (/) ) = (/) |
|
| 54 | fvprc | |- ( -. A e. _V -> ( aleph ` A ) = (/) ) |
|
| 55 | 54 | fveq2d | |- ( -. A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) |
| 56 | fvprc | |- ( -. A e. _V -> ( cf ` A ) = (/) ) |
|
| 57 | 53 55 56 | 3eqtr4a | |- ( -. A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) |
| 58 | 52 57 | pm2.61d1 | |- ( Lim A -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) |