This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An exponentiation law for alephs. Lemma 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephexp1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 2 | onenon | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) | |
| 3 | 1 2 | mp1i | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
| 4 | fvex | ⊢ ( ℵ ‘ 𝐵 ) ∈ V | |
| 5 | simplr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ On ) | |
| 6 | alephgeom | ⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ⊆ ( ℵ ‘ 𝐵 ) ) |
| 8 | ssdomg | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) | |
| 9 | 4 7 8 | mpsyl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
| 10 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 11 | ordom | ⊢ Ord ω | |
| 12 | 2onn | ⊢ 2o ∈ ω | |
| 13 | ordelss | ⊢ ( ( Ord ω ∧ 2o ∈ ω ) → 2o ⊆ ω ) | |
| 14 | 11 12 13 | mp2an | ⊢ 2o ⊆ ω |
| 15 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ On ) | |
| 16 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 | 14 17 | sstrid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 19 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( 2o ⊆ ( ℵ ‘ 𝐴 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 20 | 10 18 19 | mpsyl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) |
| 21 | alephord3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ) ) | |
| 22 | ssdomg | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) | |
| 23 | 4 22 | ax-mp | ⊢ ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 24 | 21 23 | biimtrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 26 | 4 | canth2 | ⊢ ( ℵ ‘ 𝐵 ) ≺ 𝒫 ( ℵ ‘ 𝐵 ) |
| 27 | sdomdom | ⊢ ( ( ℵ ‘ 𝐵 ) ≺ 𝒫 ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) |
| 29 | domtr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) → ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) | |
| 30 | 25 28 29 | sylancl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 31 | mappwen | ⊢ ( ( ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐵 ) ) ∧ ( 2o ≼ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ) | |
| 32 | 3 9 20 30 31 | syl22anc | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 33 | 4 | pw2en | ⊢ 𝒫 ( ℵ ‘ 𝐵 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) |
| 34 | enen2 | ⊢ ( 𝒫 ( ℵ ‘ 𝐵 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) → ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) |
| 36 | 32 35 | sylib | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) |