This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate representation of a successor aleph. Compare alephsuc and alephsuc2 . Equality can be obtained by taking the card of the right-hand side then using alephcard and carden . (Contributed by NM, 23-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsuc3 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) ≈ { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsuc2 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ) | |
| 2 | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) | |
| 3 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 4 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ℵ ‘ 𝐴 ) ∈ dom card |
| 6 | cardval2 | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ dom card → ( card ‘ ( ℵ ‘ 𝐴 ) ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } ) | |
| 7 | 5 6 | ax-mp | ⊢ ( card ‘ ( ℵ ‘ 𝐴 ) ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } |
| 8 | 2 7 | eqtr3i | ⊢ ( ℵ ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } ) |
| 10 | 1 9 | difeq12d | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ suc 𝐴 ) ∖ ( ℵ ‘ 𝐴 ) ) = ( { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ∖ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } ) ) |
| 11 | difrab | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ∖ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } ) = { 𝑥 ∈ On ∣ ( 𝑥 ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( ℵ ‘ 𝐴 ) ) } | |
| 12 | bren2 | ⊢ ( 𝑥 ≈ ( ℵ ‘ 𝐴 ) ↔ ( 𝑥 ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 13 | 12 | rabbii | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } = { 𝑥 ∈ On ∣ ( 𝑥 ≼ ( ℵ ‘ 𝐴 ) ∧ ¬ 𝑥 ≺ ( ℵ ‘ 𝐴 ) ) } |
| 14 | 11 13 | eqtr4i | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ∖ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ 𝐴 ) } ) = { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } |
| 15 | 10 14 | eqtr2di | ⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } = ( ( ℵ ‘ suc 𝐴 ) ∖ ( ℵ ‘ 𝐴 ) ) ) |
| 16 | alephon | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ On | |
| 17 | onenon | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) | |
| 18 | 16 17 | mp1i | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) ∈ dom card ) |
| 19 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 20 | alephgeom | ⊢ ( suc 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ suc 𝐴 ) ) | |
| 21 | 19 20 | bitri | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ suc 𝐴 ) ) |
| 22 | fvex | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ V | |
| 23 | ssdomg | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ suc 𝐴 ) → ω ≼ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ suc 𝐴 ) → ω ≼ ( ℵ ‘ suc 𝐴 ) ) |
| 25 | 21 24 | sylbi | ⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ suc 𝐴 ) ) |
| 26 | alephordilem1 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 27 | infdif | ⊢ ( ( ( ℵ ‘ suc 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ suc 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ( ℵ ‘ suc 𝐴 ) ∖ ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ suc 𝐴 ) ) | |
| 28 | 18 25 26 27 | syl3anc | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ suc 𝐴 ) ∖ ( ℵ ‘ 𝐴 ) ) ≈ ( ℵ ‘ suc 𝐴 ) ) |
| 29 | 15 28 | eqbrtrd | ⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } ≈ ( ℵ ‘ suc 𝐴 ) ) |
| 30 | 29 | ensymd | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) ≈ { 𝑥 ∈ On ∣ 𝑥 ≈ ( ℵ ‘ 𝐴 ) } ) |