This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An exponentiation law for alephs. Lemma 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephexp1 | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | |- ( aleph ` B ) e. On |
|
| 2 | onenon | |- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
|
| 3 | 1 2 | mp1i | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` B ) e. dom card ) |
| 4 | fvex | |- ( aleph ` B ) e. _V |
|
| 5 | simplr | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> B e. On ) |
|
| 6 | alephgeom | |- ( B e. On <-> _om C_ ( aleph ` B ) ) |
|
| 7 | 5 6 | sylib | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om C_ ( aleph ` B ) ) |
| 8 | ssdomg | |- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
|
| 9 | 4 7 8 | mpsyl | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om ~<_ ( aleph ` B ) ) |
| 10 | fvex | |- ( aleph ` A ) e. _V |
|
| 11 | ordom | |- Ord _om |
|
| 12 | 2onn | |- 2o e. _om |
|
| 13 | ordelss | |- ( ( Ord _om /\ 2o e. _om ) -> 2o C_ _om ) |
|
| 14 | 11 12 13 | mp2an | |- 2o C_ _om |
| 15 | simpll | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> A e. On ) |
|
| 16 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om C_ ( aleph ` A ) ) |
| 18 | 14 17 | sstrid | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> 2o C_ ( aleph ` A ) ) |
| 19 | ssdomg | |- ( ( aleph ` A ) e. _V -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) |
|
| 20 | 10 18 19 | mpsyl | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> 2o ~<_ ( aleph ` A ) ) |
| 21 | alephord3 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |
|
| 22 | ssdomg | |- ( ( aleph ` B ) e. _V -> ( ( aleph ` A ) C_ ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
|
| 23 | 4 22 | ax-mp | |- ( ( aleph ` A ) C_ ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
| 24 | 21 23 | biimtrdi | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 25 | 24 | imp | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
| 26 | 4 | canth2 | |- ( aleph ` B ) ~< ~P ( aleph ` B ) |
| 27 | sdomdom | |- ( ( aleph ` B ) ~< ~P ( aleph ` B ) -> ( aleph ` B ) ~<_ ~P ( aleph ` B ) ) |
|
| 28 | 26 27 | ax-mp | |- ( aleph ` B ) ~<_ ~P ( aleph ` B ) |
| 29 | domtr | |- ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ ( aleph ` B ) ~<_ ~P ( aleph ` B ) ) -> ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) |
|
| 30 | 25 28 29 | sylancl | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) |
| 31 | mappwen | |- ( ( ( ( aleph ` B ) e. dom card /\ _om ~<_ ( aleph ` B ) ) /\ ( 2o ~<_ ( aleph ` A ) /\ ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) ) |
|
| 32 | 3 9 20 30 31 | syl22anc | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) ) |
| 33 | 4 | pw2en | |- ~P ( aleph ` B ) ~~ ( 2o ^m ( aleph ` B ) ) |
| 34 | enen2 | |- ( ~P ( aleph ` B ) ~~ ( 2o ^m ( aleph ` B ) ) -> ( ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) <-> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) ) |
|
| 35 | 33 34 | ax-mp | |- ( ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) <-> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) |
| 36 | 32 35 | sylib | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) |