This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 4 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 5 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 6 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 7 | ontri1 | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) |
| 9 | 8 | a1i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 10 | 3 4 9 | 3bitr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ) ) |