This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephadd | ⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 2 | fvex | ⊢ ( ℵ ‘ 𝐵 ) ∈ V | |
| 3 | djuex | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ V ∧ ( ℵ ‘ 𝐵 ) ∈ V ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V |
| 5 | alephfnon | ⊢ ℵ Fn On | |
| 6 | 5 | fndmi | ⊢ dom ℵ = On |
| 7 | 6 | eleq2i | ⊢ ( 𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On ) |
| 8 | 7 | notbii | ⊢ ( ¬ 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On ) |
| 9 | 6 | eleq2i | ⊢ ( 𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On ) |
| 10 | 9 | notbii | ⊢ ( ¬ 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On ) |
| 11 | df-dju | ⊢ ( ∅ ⊔ ∅ ) = ( ( { ∅ } × ∅ ) ∪ ( { 1o } × ∅ ) ) | |
| 12 | xpundir | ⊢ ( ( { ∅ } ∪ { 1o } ) × ∅ ) = ( ( { ∅ } × ∅ ) ∪ ( { 1o } × ∅ ) ) | |
| 13 | xp0 | ⊢ ( ( { ∅ } ∪ { 1o } ) × ∅ ) = ∅ | |
| 14 | 11 12 13 | 3eqtr2i | ⊢ ( ∅ ⊔ ∅ ) = ∅ |
| 15 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom ℵ → ( ℵ ‘ 𝐴 ) = ∅ ) | |
| 16 | ndmfv | ⊢ ( ¬ 𝐵 ∈ dom ℵ → ( ℵ ‘ 𝐵 ) = ∅ ) | |
| 17 | djueq12 | ⊢ ( ( ( ℵ ‘ 𝐴 ) = ∅ ∧ ( ℵ ‘ 𝐵 ) = ∅ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ∅ ⊔ ∅ ) ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ∅ ⊔ ∅ ) ) |
| 19 | 15 | adantr | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ℵ ‘ 𝐴 ) = ∅ ) |
| 20 | 16 | adantl | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ℵ ‘ 𝐵 ) = ∅ ) |
| 21 | 19 20 | uneq12d | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) = ( ∅ ∪ ∅ ) ) |
| 22 | un0 | ⊢ ( ∅ ∪ ∅ ) = ∅ | |
| 23 | 21 22 | eqtrdi | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) = ∅ ) |
| 24 | 14 18 23 | 3eqtr4a | ⊢ ( ( ¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 25 | 8 10 24 | syl2anbr | ⊢ ( ( ¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 26 | eqeng | ⊢ ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ∈ V → ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) ) | |
| 27 | 4 25 26 | mpsyl | ⊢ ( ( ¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 28 | 27 | ex | ⊢ ( ¬ 𝐴 ∈ On → ( ¬ 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) ) |
| 29 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 30 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 31 | 1 30 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 32 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 33 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 34 | 32 33 | ax-mp | ⊢ ( ℵ ‘ 𝐴 ) ∈ dom card |
| 35 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 36 | onenon | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) | |
| 37 | 35 36 | ax-mp | ⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
| 38 | infdju | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) | |
| 39 | 34 37 38 | mp3an12 | ⊢ ( ω ≼ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 40 | 31 39 | syl | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 41 | 29 40 | sylbi | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 42 | alephgeom | ⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) | |
| 43 | ssdomg | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) | |
| 44 | 2 43 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
| 45 | djucomen | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ V ∧ ( ℵ ‘ 𝐵 ) ∈ V ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ) | |
| 46 | 1 2 45 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) |
| 47 | infdju | ⊢ ( ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐵 ) ) → ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) | |
| 48 | 37 34 47 | mp3an12 | ⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
| 49 | entr | ⊢ ( ( ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐵 ) ⊔ ( ℵ ‘ 𝐴 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) | |
| 50 | 46 48 49 | sylancr | ⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) ) |
| 51 | uncom | ⊢ ( ( ℵ ‘ 𝐵 ) ∪ ( ℵ ‘ 𝐴 ) ) = ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) | |
| 52 | 50 51 | breqtrdi | ⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 53 | 44 52 | syl | ⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 54 | 42 53 | sylbi | ⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| 55 | 28 41 54 | pm2.61ii | ⊢ ( ( ℵ ‘ 𝐴 ) ⊔ ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) |