This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephadd | |- ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( aleph ` A ) e. _V |
|
| 2 | fvex | |- ( aleph ` B ) e. _V |
|
| 3 | djuex | |- ( ( ( aleph ` A ) e. _V /\ ( aleph ` B ) e. _V ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V ) |
|
| 4 | 1 2 3 | mp2an | |- ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V |
| 5 | alephfnon | |- aleph Fn On |
|
| 6 | 5 | fndmi | |- dom aleph = On |
| 7 | 6 | eleq2i | |- ( A e. dom aleph <-> A e. On ) |
| 8 | 7 | notbii | |- ( -. A e. dom aleph <-> -. A e. On ) |
| 9 | 6 | eleq2i | |- ( B e. dom aleph <-> B e. On ) |
| 10 | 9 | notbii | |- ( -. B e. dom aleph <-> -. B e. On ) |
| 11 | df-dju | |- ( (/) |_| (/) ) = ( ( { (/) } X. (/) ) u. ( { 1o } X. (/) ) ) |
|
| 12 | xpundir | |- ( ( { (/) } u. { 1o } ) X. (/) ) = ( ( { (/) } X. (/) ) u. ( { 1o } X. (/) ) ) |
|
| 13 | xp0 | |- ( ( { (/) } u. { 1o } ) X. (/) ) = (/) |
|
| 14 | 11 12 13 | 3eqtr2i | |- ( (/) |_| (/) ) = (/) |
| 15 | ndmfv | |- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
|
| 16 | ndmfv | |- ( -. B e. dom aleph -> ( aleph ` B ) = (/) ) |
|
| 17 | djueq12 | |- ( ( ( aleph ` A ) = (/) /\ ( aleph ` B ) = (/) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( (/) |_| (/) ) ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( (/) |_| (/) ) ) |
| 19 | 15 | adantr | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( aleph ` A ) = (/) ) |
| 20 | 16 | adantl | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( aleph ` B ) = (/) ) |
| 21 | 19 20 | uneq12d | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) u. ( aleph ` B ) ) = ( (/) u. (/) ) ) |
| 22 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 23 | 21 22 | eqtrdi | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) u. ( aleph ` B ) ) = (/) ) |
| 24 | 14 18 23 | 3eqtr4a | |- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 25 | 8 10 24 | syl2anbr | |- ( ( -. A e. On /\ -. B e. On ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 26 | eqeng | |- ( ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V -> ( ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) ) |
|
| 27 | 4 25 26 | mpsyl | |- ( ( -. A e. On /\ -. B e. On ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 28 | 27 | ex | |- ( -. A e. On -> ( -. B e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) ) |
| 29 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 30 | ssdomg | |- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
|
| 31 | 1 30 | ax-mp | |- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 32 | alephon | |- ( aleph ` A ) e. On |
|
| 33 | onenon | |- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
|
| 34 | 32 33 | ax-mp | |- ( aleph ` A ) e. dom card |
| 35 | alephon | |- ( aleph ` B ) e. On |
|
| 36 | onenon | |- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
|
| 37 | 35 36 | ax-mp | |- ( aleph ` B ) e. dom card |
| 38 | infdju | |- ( ( ( aleph ` A ) e. dom card /\ ( aleph ` B ) e. dom card /\ _om ~<_ ( aleph ` A ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
|
| 39 | 34 37 38 | mp3an12 | |- ( _om ~<_ ( aleph ` A ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 40 | 31 39 | syl | |- ( _om C_ ( aleph ` A ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 41 | 29 40 | sylbi | |- ( A e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 42 | alephgeom | |- ( B e. On <-> _om C_ ( aleph ` B ) ) |
|
| 43 | ssdomg | |- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
|
| 44 | 2 43 | ax-mp | |- ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) |
| 45 | djucomen | |- ( ( ( aleph ` A ) e. _V /\ ( aleph ` B ) e. _V ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) ) |
|
| 46 | 1 2 45 | mp2an | |- ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) |
| 47 | infdju | |- ( ( ( aleph ` B ) e. dom card /\ ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` B ) ) -> ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
|
| 48 | 37 34 47 | mp3an12 | |- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 49 | entr | |- ( ( ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) /\ ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
|
| 50 | 46 48 49 | sylancr | |- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 51 | uncom | |- ( ( aleph ` B ) u. ( aleph ` A ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) |
|
| 52 | 50 51 | breqtrdi | |- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 53 | 44 52 | syl | |- ( _om C_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 54 | 42 53 | sylbi | |- ( B e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 55 | 28 41 54 | pm2.61ii | |- ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) |