This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two alephs is their maximum. Equation 6.1 of Jech p. 42. (Contributed by NM, 29-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephmul | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom | ⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 2 | fvex | ⊢ ( ℵ ‘ 𝐴 ) ∈ V | |
| 3 | ssdomg | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝐴 ) → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝐴 ∈ On → ω ≼ ( ℵ ‘ 𝐴 ) ) |
| 6 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 7 | onenon | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ℵ ‘ 𝐴 ) ∈ dom card ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ℵ ‘ 𝐴 ) ∈ dom card |
| 9 | 5 8 | jctil | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 10 | alephgeom | ⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) | |
| 11 | fvex | ⊢ ( ℵ ‘ 𝐵 ) ∈ V | |
| 12 | ssdomg | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
| 14 | infn0 | ⊢ ( ω ≼ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≠ ∅ ) | |
| 15 | 13 14 | syl | ⊢ ( ω ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≠ ∅ ) |
| 16 | 10 15 | sylbi | ⊢ ( 𝐵 ∈ On → ( ℵ ‘ 𝐵 ) ≠ ∅ ) |
| 17 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 18 | onenon | ⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ℵ ‘ 𝐵 ) ∈ dom card |
| 20 | 16 19 | jctil | ⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ≠ ∅ ) ) |
| 21 | infxp | ⊢ ( ( ( ( ℵ ‘ 𝐴 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐴 ) ) ∧ ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ( ℵ ‘ 𝐵 ) ≠ ∅ ) ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) | |
| 22 | 9 20 21 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) × ( ℵ ‘ 𝐵 ) ) ≈ ( ( ℵ ‘ 𝐴 ) ∪ ( ℵ ‘ 𝐵 ) ) ) |