This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djueq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) = ( 𝐵 ⊔ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 | ⊢ ( 𝐴 = 𝐵 → ( { ∅ } × 𝐴 ) = ( { ∅ } × 𝐵 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( { ∅ } × 𝐴 ) = ( { ∅ } × 𝐵 ) ) |
| 3 | xpeq2 | ⊢ ( 𝐶 = 𝐷 → ( { 1o } × 𝐶 ) = ( { 1o } × 𝐷 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( { 1o } × 𝐶 ) = ( { 1o } × 𝐷 ) ) |
| 5 | 2 4 | uneq12d | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) ) |
| 6 | df-dju | ⊢ ( 𝐴 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 7 | df-dju | ⊢ ( 𝐵 ⊔ 𝐷 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐷 ) ) | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → ( 𝐴 ⊔ 𝐶 ) = ( 𝐵 ⊔ 𝐷 ) ) |