This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdju | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unnum | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
| 3 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 4 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 5 | 2 3 4 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 7 | djudom2 | ⊢ ( ( 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ∧ 𝐴 ∈ dom card ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ) |
| 9 | djucomen | ⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐴 ∪ 𝐵 ) ∈ dom card ) → ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) | |
| 10 | 6 2 9 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
| 11 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ∧ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
| 13 | simp3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ω ≼ 𝐴 ) | |
| 14 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 15 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 16 | 2 14 15 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 17 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ω ≼ ( 𝐴 ∪ 𝐵 ) ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ω ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 19 | infdjuabs | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴 ∪ 𝐵 ) ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 20 | 2 18 16 19 | syl3anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 21 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ) | |
| 22 | 12 20 21 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 23 | undjudom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 25 | sbth | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |