This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acndom | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi | ⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 2 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑋 ∈ AC 𝐵 ) | |
| 4 | elmapi | ⊢ ( 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑔 : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 6 | simpll1 | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 7 | f1f1orn | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) | |
| 8 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 → ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝐴 ) | |
| 9 | f1of | ⊢ ( ◡ 𝑓 : ran 𝑓 –1-1-onto→ 𝐴 → ◡ 𝑓 : ran 𝑓 ⟶ 𝐴 ) | |
| 10 | 6 7 8 9 | 4syl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ◡ 𝑓 : ran 𝑓 ⟶ 𝐴 ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ ran 𝑓 ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
| 12 | simpl2 | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ ¬ 𝑦 ∈ ran 𝑓 ) → 𝑥 ∈ 𝐴 ) |
| 14 | 11 13 | ifclda | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ∈ 𝐴 ) |
| 15 | 5 14 | ffvelcdmd | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 16 | eldifsn | ⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) | |
| 17 | elpwi | ⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ) | |
| 18 | 17 | anim1i | ⊢ ( ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ 𝒫 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
| 19 | 16 18 | sylbi | ⊢ ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
| 20 | 15 19 | syl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) |
| 22 | acni2 | ⊢ ( ( 𝑋 ∈ AC 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ⊆ 𝑋 ∧ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ≠ ∅ ) ) → ∃ 𝑘 ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) | |
| 23 | 3 21 22 | syl2anc | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑘 ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
| 24 | f1dm | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → dom 𝑓 = 𝐴 ) | |
| 25 | vex | ⊢ 𝑓 ∈ V | |
| 26 | 25 | dmex | ⊢ dom 𝑓 ∈ V |
| 27 | 24 26 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝐴 ∈ V ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → 𝐴 ∈ V ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → 𝐴 ∈ V ) |
| 30 | simpll1 | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) | |
| 31 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 32 | frn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ran 𝑓 ⊆ 𝐵 ) | |
| 33 | ssralv | ⊢ ( ran 𝑓 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) | |
| 34 | 30 31 32 33 | 4syl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) |
| 35 | iftrue | ⊢ ( 𝑦 ∈ ran 𝑓 → if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) | |
| 36 | 35 | fveq2d | ⊢ ( 𝑦 ∈ ran 𝑓 → ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) = ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
| 37 | 36 | eleq2d | ⊢ ( 𝑦 ∈ ran 𝑓 → ( ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ↔ ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
| 38 | 37 | ralbiia | ⊢ ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ↔ ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
| 39 | 34 38 | imbitrdi | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
| 40 | f1fn | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 Fn 𝐴 ) | |
| 41 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( 𝑘 ‘ 𝑦 ) = ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 42 | 2fveq3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) | |
| 43 | 41 42 | eleq12d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 44 | 43 | ralrn | ⊢ ( 𝑓 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 45 | 30 40 44 | 3syl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ ran 𝑓 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 46 | 39 45 | sylibd | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 47 | 30 7 | syl | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ) |
| 48 | f1ocnvfv1 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ran 𝑓 ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) | |
| 49 | 47 48 | sylan | ⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
| 50 | 49 | fveq2d | ⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) = ( 𝑔 ‘ 𝑧 ) ) |
| 51 | 50 | eleq2d | ⊢ ( ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ↔ ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
| 52 | 51 | ralbidva | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
| 53 | 46 52 | sylibd | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ 𝑘 : 𝐵 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
| 54 | 53 | impr | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
| 55 | acnlem | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑘 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝑔 ‘ 𝑧 ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) | |
| 56 | 29 54 55 | syl2anc | ⊢ ( ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) ∧ ( 𝑘 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑘 ‘ 𝑦 ) ∈ ( 𝑔 ‘ if ( 𝑦 ∈ ran 𝑓 , ( ◡ 𝑓 ‘ 𝑦 ) , 𝑥 ) ) ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
| 57 | 23 56 | exlimddv | ⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) ∧ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
| 58 | 57 | ralrimiva | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) |
| 59 | elex | ⊢ ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ V ) | |
| 60 | isacn | ⊢ ( ( 𝑋 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) | |
| 61 | 59 27 60 | syl2anr | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ AC 𝐵 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
| 62 | 61 | 3adant2 | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑔 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ ℎ ∀ 𝑧 ∈ 𝐴 ( ℎ ‘ 𝑧 ) ∈ ( 𝑔 ‘ 𝑧 ) ) ) |
| 63 | 58 62 | mpbird | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑋 ∈ AC 𝐵 ) → 𝑋 ∈ AC 𝐴 ) |
| 64 | 63 | 3exp | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
| 65 | 64 | exlimdv | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
| 66 | 2 65 | biimtrid | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( ¬ 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) ) |
| 67 | acneq | ⊢ ( 𝐴 = ∅ → AC 𝐴 = AC ∅ ) | |
| 68 | 0fi | ⊢ ∅ ∈ Fin | |
| 69 | finacn | ⊢ ( ∅ ∈ Fin → AC ∅ = V ) | |
| 70 | 68 69 | ax-mp | ⊢ AC ∅ = V |
| 71 | 67 70 | eqtrdi | ⊢ ( 𝐴 = ∅ → AC 𝐴 = V ) |
| 72 | 71 | eleq2d | ⊢ ( 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐴 ↔ 𝑋 ∈ V ) ) |
| 73 | 59 72 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
| 74 | 66 73 | pm2.61d2 | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
| 75 | 74 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |
| 76 | 1 75 | syl | ⊢ ( 𝐴 ≼ 𝐵 → ( 𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴 ) ) |