This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finacn | ⊢ ( 𝐴 ∈ Fin → AC 𝐴 = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | ⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
| 3 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) ) | |
| 4 | eldifsni | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
| 6 | n0 | ⊢ ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 8 | rexv | ⊢ ( ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 11 | 2 10 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 12 | eleq1 | ⊢ ( 𝑧 = ( 𝑔 ‘ 𝑦 ) → ( 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 13 | 12 | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 14 | 11 13 | syldan | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 15 | exsimpr | ⊢ ( ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝐴 ∈ Fin → ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | isacn | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 20 | 18 19 | mpan | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
| 21 | 17 20 | mpbird | ⊢ ( 𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴 ) |
| 22 | 18 | a1i | ⊢ ( 𝐴 ∈ Fin → 𝑥 ∈ V ) |
| 23 | 21 22 | 2thd | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V ) ) |
| 24 | 23 | eqrdv | ⊢ ( 𝐴 ∈ Fin → AC 𝐴 = V ) |