This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acni2 | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝐵 ∈ 𝒫 𝑋 ∧ 𝐵 ≠ ∅ ) ) | |
| 2 | elpw2g | ⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝐵 ∈ 𝒫 𝑋 ↔ 𝐵 ⊆ 𝑋 ) ) | |
| 3 | 2 | anbi1d | ⊢ ( 𝑋 ∈ AC 𝐴 → ( ( 𝐵 ∈ 𝒫 𝑋 ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
| 4 | 1 3 | bitrid | ⊢ ( 𝑋 ∈ AC 𝐴 → ( 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑋 ∈ AC 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 8 | 7 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 9 | 6 8 | sylib | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 10 | acni | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 𝒫 𝑋 ∖ { ∅ } ) ) → ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) | |
| 11 | 9 10 | syldan | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 12 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 13 | 12 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 14 | nfv | ⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) | |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 17 | 15 16 | eleq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
| 18 | 13 14 17 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 19 | simplr | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) | |
| 20 | simplr | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝑥 ∈ 𝐴 ) | |
| 21 | simpll | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝑋 ∈ AC 𝐴 ) | |
| 22 | simpr | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ⊆ 𝑋 ) | |
| 23 | 21 22 | ssexd | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → 𝐵 ∈ V ) |
| 24 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 25 | 20 23 24 | syl2anc | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 26 | 25 | eleq2d | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ⊆ 𝑋 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ 𝑋 → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 28 | 27 | adantrd | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 29 | 28 | ralimdva | ⊢ ( 𝑋 ∈ AC 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 30 | 29 | imp | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 31 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 33 | 32 | biimpa | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 34 | ssel | ⊢ ( 𝐵 ⊆ 𝑋 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) |
| 36 | 35 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) ) |
| 37 | 19 33 36 | sylc | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ) |
| 38 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) ) |
| 40 | 39 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) |
| 41 | 37 40 | sylan | ⊢ ( ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑋 ) |
| 42 | 41 | fmpttd | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ) |
| 43 | simpll | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → 𝑋 ∈ AC 𝐴 ) | |
| 44 | acnrcl | ⊢ ( 𝑋 ∈ AC 𝐴 → 𝐴 ∈ V ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → 𝐴 ∈ V ) |
| 46 | fex2 | ⊢ ( ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ 𝐴 ∈ V ∧ 𝑋 ∈ AC 𝐴 ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) | |
| 47 | 42 45 43 46 | syl3anc | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ∈ V ) |
| 48 | eqid | ⊢ ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) | |
| 49 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 50 | 15 48 49 | fvmpt | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 51 | 50 | eleq1d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 52 | 51 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 53 | 33 52 | sylibr | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 54 | 42 53 | jca | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 55 | feq1 | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 : 𝐴 ⟶ 𝑋 ↔ ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ) ) | |
| 56 | fveq1 | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ) | |
| 57 | 56 | eleq1d | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 58 | 57 | ralbidv | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 59 | 55 58 | anbi12d | ⊢ ( 𝑔 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 60 | 47 54 59 | spcedv | ⊢ ( ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 61 | 60 | ex | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 62 | 18 61 | biimtrid | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 63 | 62 | exlimdv | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ( ∃ 𝑓 ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 64 | 11 63 | mpd | ⊢ ( ( 𝑋 ∈ AC 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) ) |