This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set X which has choice sequences on it of length ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acnnum | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V ) | |
| 2 | difss | ⊢ ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋 | |
| 3 | ssdomg | ⊢ ( 𝒫 𝑋 ∈ V → ( ( 𝒫 𝑋 ∖ { ∅ } ) ⊆ 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 ) ) | |
| 4 | 1 2 3 | mpisyl | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 ) |
| 5 | acndom | ⊢ ( ( 𝒫 𝑋 ∖ { ∅ } ) ≼ 𝒫 𝑋 → ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ) ) | |
| 6 | 4 5 | mpcom | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 7 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) ) | |
| 8 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 9 | 8 | anim1i | ⊢ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) |
| 10 | 7 9 | sylbi | ⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) |
| 12 | acni2 | ⊢ ( ( 𝑋 ∈ AC ( 𝒫 𝑋 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 13 | 6 11 12 | sylancl | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 14 | simpr | ⊢ ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) | |
| 15 | 7 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 16 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 17 | 15 16 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 18 | 17 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 19 | 14 18 | sylib | ⊢ ( ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 20 | 19 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 𝒫 𝑋 ∖ { ∅ } ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ ( 𝒫 𝑋 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 21 | 13 20 | syl | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 22 | dfac8a | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → 𝑋 ∈ dom card ) ) | |
| 23 | 21 22 | mpd | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card ) |
| 24 | pwexg | ⊢ ( 𝑋 ∈ dom card → 𝒫 𝑋 ∈ V ) | |
| 25 | numacn | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋 ) ) | |
| 26 | 24 25 | mpcom | ⊢ ( 𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋 ) |
| 27 | 23 26 | impbii | ⊢ ( 𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card ) |