This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a mapping satisfying the consequent of isacn . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acnlem | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn | ⊢ ( 𝑓 ‘ 𝑥 ) ⊆ ∪ ran 𝑓 | |
| 2 | simpr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) | |
| 3 | 1 2 | sselid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝐵 ∈ ∪ ran 𝑓 ) |
| 4 | 3 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ∪ ran 𝑓 ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 6 | 5 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ∪ ran 𝑓 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ∪ ran 𝑓 ) |
| 7 | 4 6 | sylib | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ∪ ran 𝑓 ) |
| 8 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 9 | vex | ⊢ 𝑓 ∈ V | |
| 10 | 9 | rnex | ⊢ ran 𝑓 ∈ V |
| 11 | 10 | uniex | ⊢ ∪ ran 𝑓 ∈ V |
| 12 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ∪ ran 𝑓 ∧ 𝐴 ∈ 𝑉 ∧ ∪ ran 𝑓 ∈ V ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 13 | 11 12 | mp3an3 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ∪ ran 𝑓 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 14 | 7 8 13 | syl2anr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 15 | 5 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 16 | 15 2 | eqeltrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 17 | 16 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 19 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 20 | 19 | nfeq2 | ⊢ Ⅎ 𝑥 𝑔 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 21 | fveq1 | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 23 | 20 22 | ralbid | ⊢ ( 𝑔 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 24 | 14 18 23 | spcedv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑓 ‘ 𝑥 ) ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) |