This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isacn | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋 ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝑦 = 𝑋 → ( 𝒫 𝑦 ∖ { ∅ } ) = ( 𝒫 𝑋 ∖ { ∅ } ) ) |
| 3 | 2 | oveq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝒫 𝑦 ∖ { ∅ } ) ↑m 𝐴 ) = ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ) |
| 4 | 3 | raleqdv | ⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑓 ∈ ( ( 𝒫 𝑦 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑦 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 6 | df-acn | ⊢ AC 𝐴 = { 𝑦 ∣ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑦 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) } | |
| 7 | 5 6 | elab2g | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ AC 𝐴 ↔ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 8 | elex | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) | |
| 9 | biid | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 10 | 9 | baib | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝐴 ∈ V ∧ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 12 | 7 11 | sylan9bb | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑋 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑋 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |