This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of ac5b with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ac5num | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexr | ⊢ ( ∪ 𝐴 ∈ dom card → 𝐴 ∈ V ) | |
| 2 | dfac8b | ⊢ ( ∪ 𝐴 ∈ dom card → ∃ 𝑟 𝑟 We ∪ 𝐴 ) | |
| 3 | dfac8c | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 4 | 1 2 3 | sylc | ⊢ ( ∪ 𝐴 ∈ dom card → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 6 | 1 | ad2antrr | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → 𝐴 ∈ V ) |
| 7 | 6 | mptexd | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ∈ V ) |
| 8 | nelne2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) → 𝑥 ≠ ∅ ) | |
| 9 | 8 | ancoms | ⊢ ( ( ¬ ∅ ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
| 10 | 9 | adantll | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ∅ ) |
| 11 | pm2.27 | ⊢ ( 𝑥 ≠ ∅ → ( ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 13 | 12 | ralimdva | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 16 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 17 | 15 16 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 18 | 17 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) |
| 19 | 14 18 | sylan | ⊢ ( ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) |
| 20 | elunii | ⊢ ( ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ ∪ 𝐴 ) | |
| 21 | 19 20 | sylancom | ⊢ ( ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ ∪ 𝐴 ) |
| 22 | 21 | fmpttd | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) : 𝐴 ⟶ ∪ 𝐴 ) |
| 23 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 24 | eqid | ⊢ ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) | |
| 25 | fvex | ⊢ ( 𝑔 ‘ 𝑥 ) ∈ V | |
| 26 | 23 24 25 | fvmpt | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ↔ ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 28 | 27 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) |
| 29 | 14 28 | sylibr | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ) |
| 30 | 22 29 | jca | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 31 | feq1 | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 : 𝐴 ⟶ ∪ 𝐴 ↔ ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) : 𝐴 ⟶ ∪ 𝐴 ) ) | |
| 32 | fveq1 | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 34 | 33 | ralbidv | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 35 | 31 34 | anbi12d | ⊢ ( 𝑓 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) → ( ( 𝑓 : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝑦 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑦 ) ) ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 36 | 7 30 35 | spcedv | ⊢ ( ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 37 | 5 36 | exlimddv | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |