This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set B , where ph depends on x (the natural number) and y (to specify a member of B ). A stronger version of this theorem, ac6s , allows B to be a proper class. (Contributed by NM, 18-Oct-1999) (Revised by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6.1 | ⊢ 𝐴 ∈ V | |
| ac6.2 | ⊢ 𝐵 ∈ V | ||
| ac6.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ac6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6.2 | ⊢ 𝐵 ∈ V | |
| 3 | ac6.3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | ssrab2 | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 | |
| 5 | 4 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 |
| 6 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 ) | |
| 7 | 5 6 | mpbir | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 |
| 8 | 2 7 | ssexi | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V |
| 9 | numth3 | ⊢ ( ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ V → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ) | |
| 10 | 8 9 | ax-mp | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card |
| 11 | 3 | ac6num | ⊢ ( ( 𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ dom card ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 12 | 1 10 11 | mp3an12 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |