This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf has implicit substitution). The hypothesis specifies that x must not be a free variable in B . (Contributed by NM, 30-Sep-2003) (Proof shortened by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elrabsf.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| Assertion | elrabsf | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabsf.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| 2 | dfsbcq | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 5 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 6 | sbceq1a | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 7 | 1 3 4 5 6 | cbvrabw | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ [ 𝑦 / 𝑥 ] 𝜑 } |
| 8 | 2 7 | elrab2 | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝐴 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |