This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efieq1re | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( exp ‘ ( i · 𝐴 ) ) = 1 ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 8 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 | adddi | ⊢ ( ( i ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) | |
| 11 | 3 5 9 10 | mp3an2i | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 12 | ixi | ⊢ ( i · i ) = - 1 | |
| 13 | 12 | oveq1i | ⊢ ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( - 1 · ( ℑ ‘ 𝐴 ) ) |
| 14 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 15 | 3 3 7 14 | mp3an12i | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 16 | 7 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 17 | 13 15 16 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 18 | 17 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · ( ℜ ‘ 𝐴 ) ) + ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
| 19 | 11 18 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
| 20 | 2 19 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) ) |
| 22 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 23 | 3 5 22 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 24 | 6 | renegcld | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 25 | 24 | recnd | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 26 | efadd | ⊢ ( ( ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · ( ℜ ‘ 𝐴 ) ) + - ( ℑ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
| 28 | 21 27 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
| 29 | 28 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 ↔ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 ) ) |
| 30 | efcl | ⊢ ( ( i · ( ℜ ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 31 | 23 30 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 32 | efcl | ⊢ ( - ( ℑ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 33 | 25 32 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 34 | 31 33 | absmuld | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) · ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 35 | absefi | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) = 1 ) | |
| 36 | 4 35 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) = 1 ) |
| 37 | 24 | reefcld | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 38 | efgt0 | ⊢ ( - ( ℑ ‘ 𝐴 ) ∈ ℝ → 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) | |
| 39 | 24 38 | syl | ⊢ ( 𝐴 ∈ ℂ → 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 40 | 0re | ⊢ 0 ∈ ℝ | |
| 41 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) | |
| 42 | 40 41 | mpan | ⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( exp ‘ - ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
| 43 | 37 39 42 | sylc | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 44 | 37 43 | absidd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 45 | 36 44 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) ) · ( abs ‘ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( 1 · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) |
| 46 | 33 | mullidd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 47 | 34 45 46 | 3eqtrrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 48 | fveq2 | ⊢ ( ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 → ( abs ‘ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) | |
| 49 | 47 48 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 ) → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) |
| 50 | 49 | ex | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( ℜ ‘ 𝐴 ) ) ) · ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) = 1 → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) ) |
| 51 | 29 50 | sylbid | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 → ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) ) |
| 52 | 7 | negeq0d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = 0 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 53 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 54 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 55 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 56 | 54 55 | eqtr4i | ⊢ ( exp ‘ 0 ) = ( abs ‘ 1 ) |
| 57 | 56 | eqeq2i | ⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ) |
| 58 | reef11 | ⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 59 | 24 40 58 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 60 | 57 59 | bitr3id | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 61 | 52 53 60 | 3bitr4rd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( abs ‘ 1 ) ↔ 𝐴 ∈ ℝ ) ) |
| 62 | 51 61 | sylibd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) = 1 → 𝐴 ∈ ℝ ) ) |
| 63 | 62 | imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( exp ‘ ( i · 𝐴 ) ) = 1 ) → 𝐴 ∈ ℝ ) |