This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008) (Revised by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reef11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ) ) | |
| 2 | efle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) |
| 5 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) | |
| 6 | reefcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | reefcl | ⊢ ( 𝐵 ∈ ℝ → ( exp ‘ 𝐵 ) ∈ ℝ ) | |
| 8 | letri3 | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ ( exp ‘ 𝐵 ) ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) |
| 10 | 4 5 9 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |